BSO-FS: Bee Swarm Optimization for Feature Selection in Classification

  • Souhila SadegEmail author
  • Leila Hamdad
  • Karima Benatchba
  • Zineb Habbas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)


Feature selection is an important data-preprocessing step that often precedes the classification task. Because of large amount of features in real world applications, feature selection is considered as a hard optimization problem. For such problems, metaheuristics have been shown to be a very promising solving approach. In this work, we propose to use Bee Swarm Optimization (BSO) for feature selection. The proposed algorithm, BSO-FS, is based on the wrapper approach that uses BSO for the generation of feature subsets, and a classifier algorithm to evaluate the solutions. BSO-FS is tested on well-known datasets and its performances are compared with those of recently published methods. Obtained results show that for the majority of datasets, BSO-FS selects efficiently relevant features while improving the classification accuracy.


Bee Swarm Optimization Metaheuristic Feature selection Wrapper approach Classification Data mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clarke, B., Fokoue, E., Zhang, H.H.: Principles and theory for data mining and machine learning. Springer Science Business Media (2009)Google Scholar
  2. 2.
    Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann (2005)Google Scholar
  3. 3.
    Liu, H., Motoda, H. (eds.).: Computational methods of feature selection. CRC Press (2007)Google Scholar
  4. 4.
    Liu, H., Motoda, H., Setiono, R., Zhao, Z.: Feature Selection: An Ever Evolving Frontier in Data Mining. FSDM 10, 4–13 (2010)Google Scholar
  5. 5.
    Von Frisch, K., Lindauer, M.: The “Language” and Orientation of the Honey Bee. Annual Review of Entomology 1, 45–58 (1956, 1973)Google Scholar
  6. 6.
    Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition. International Journal of Pattern Recognition and Artificial Intelligence 17(06), 903–929 (2003)CrossRefGoogle Scholar
  7. 7.
    Inza, I., Merino, M., Larraaga, P., Quiroga, J., Sierra, B., Girala, M.: Feature subset selection by genetic algorithms and estimation of distribution algorithms: a case study in the survival of cirrhotic patients treated with TIPS. Artificial Intelligence in Medicine 23(2), 187–205 (2001)CrossRefGoogle Scholar
  8. 8.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. In: Feature Extraction, Construction and Selection, pp. 117–136. Springer, US (1998)Google Scholar
  9. 9.
    Huang, J., Cai, Y., Xu, X.: A hybrid genetic algorithm for feature selection wrapper based on mutual information. Pattern Recognition Letters 28(13), 1825–1844 (2007)CrossRefGoogle Scholar
  10. 10.
    Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms. Applied Soft Computing 18, 261–276 (2014)CrossRefGoogle Scholar
  11. 11.
    Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recognition Letters 30(5), 525–534 (2009)CrossRefGoogle Scholar
  12. 12.
    Drias, H., Sadeg, S., Yahi, S.: Cooperative bees swarm for solving the maximum weighted satisfiability problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial Intelligence Review 31(1–4), 61–85 (2009)CrossRefGoogle Scholar
  14. 14.
    Seeley, T.D.: Honeybee ecology: a study of adaptation in social life. Princeton University Press (2014)Google Scholar
  15. 15.
    Sadeg, S., Drias, H.: A selective approach to parallelise Bees Swarm Optimisation metaheuristic: application to MAX-W-SAT. International Journal of Innovative Computing and Applications 1(2), 146–158 (2007)CrossRefGoogle Scholar
  16. 16.
    Kabir, M.M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Systems with Applications 39(3), 3747–3763 (2012)CrossRefGoogle Scholar
  17. 17.
    Robbins, K.R., Zhang, W., Bertrand, J.K., Rekaya, R.: The ant colony algorithm for feature selection in high-dimension gene expression data for disease classification. Mathematical Medicine and Biology 24(4), 413–426 (2007). ISO 690zbMATHCrossRefGoogle Scholar
  18. 18.
    Chuang, L.Y., Tsai, S.W., Yang, C.H.: Improved binary particle swarm optimization using catfish effect for feature selection. Expert Systems with Applications 38(10), 12699–12707 (2011)CrossRefGoogle Scholar
  19. 19.
    Schiezaro, M., Pedrini, H.: Data feature selection based on Artificial Bee Colony algorithm. EURASIP Journal on Image and Video Processing 2013(1), 1–8 (2013)CrossRefGoogle Scholar
  20. 20.
    Belkebir, R., Guessoum, A.: A hybrid BSO-Chi2-SVM approach to Arabic text categorization. In: 2013 ACS International Conference on Computer Systems and Applications (AICCSA), pp. 1–7. IEEE, May 2013Google Scholar
  21. 21.
    Drias, H., Mosteghanemi, H.: Bees swarm optimization based approach for web information retrieval. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 6–13. IEEE, August 2010Google Scholar
  22. 22.
    Djeffal, M., Drias, H.: Multilevel bee swarm optimization for large satisfiability problem instances. In: Yin, H., Tang, K., Gao, Y., Klawonn, F., Lee, M., Weise, T., Li, B., Yao, X. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 594–602. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  23. 23.
    Djenouri, Y., Drias, H., Chemchem, A.: A hybrid bees swarm optimization and tabu search algorithm for association rule mining. In: 2013 World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 120–125. IEEE, August 2013Google Scholar
  24. 24.
    Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial intelligence 97(1), 245–271 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Koller, D., Sahami, M.: Toward optimal feature selection (1996)Google Scholar
  26. 26.
    Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The Journal of Machine Learning Research 3, 1157–1182 (2003)zbMATHGoogle Scholar
  27. 27.
    Alsukker, A., Khushaba, R., Al-Ani, A., Al-Jumaily, A.A.: Enhanced feature selection algorithm using ant colony optimization and fuzzy memberships. IASTED (2008)Google Scholar
  28. 28.
    Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters 29(9), 1351–1357 (2008)CrossRefGoogle Scholar
  29. 29.
    Ke, L., Feng, Z., Ren, Z.: An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters 29(9), 1351–1357 (2008)CrossRefGoogle Scholar
  30. 30.
    Dash, M., Liu, H.: Feature selection for classification. Intelligent data analysis 1(3), 131–156 (1997)CrossRefGoogle Scholar
  31. 31.
    Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp. 129–134, July 1992Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Souhila Sadeg
    • 1
    Email author
  • Leila Hamdad
    • 2
  • Karima Benatchba
    • 3
  • Zineb Habbas
    • 4
  1. 1.Ecole nationale Supérieure d’InformatiqueOued Smar, AlgiersAlgeria
  2. 2.LCSIEcole nationale Supérieure d’InformatiqueOued Smar, AlgiersAlgeria
  3. 3.LMCSEcole nationale Supérieure d’InformatiqueOued Smar, AlgiersAlgeria
  4. 4.LCOMSUniversité de LorraineMetzFrance

Personalised recommendations