Advertisement

Transfer Learning for the Recognition of Immunogold Particles in TEM Imaging

  • Ricardo Gamelas Sousa
  • Tiago Esteves
  • Sara Rocha
  • Francisco Figueiredo
  • Joaquim M. de Sá
  • Luís A. AlexandreEmail author
  • Jorge M. Santos
  • Luís M. Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)

Abstract

We present a (TL) framework based on (SDA) for the recognition of immunogold particles. These particles are part of a high-resolution method for the selective localization of biological molecules at the subcellular level only visible through (TEM). Four new datasets were acquired encompassing several thousands of immunogold particles. Due to the particles size (for a particular dataset a particle has a radius of 4 pixels in an image of size 4008\(\times \)2670) the annotation of these datasets is extremely time taking. Thereby, we apply a (TL) approach by reusing the learning model that can be used on other datasets containing particles of different (or similar) sizes. In our experimental study we verified that our (TL) framework outperformed the baseline (not involving TL) approach by more than 20% of accuracy on the recognition of immunogold particles.

Keywords

Deep Neural Network Target Problem Source Problem Layer Weight Immunogold Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amaral, T., Silva, L.M., Alexandre, L.A., Kandaswamy, C., Santos, J.M., de Sá, J.M.: Using different cost functions to train stacked auto-encoders. In: 2013 12th Mexican International Conference on Artificial Intelligence (MICAI), pp. 114–120. IEEE (2013)Google Scholar
  2. 2.
    Amaral, T., Silva, L.M., Alexandre, L.M., Kandaswamy, C., de Sá, J.M., Santos, J.: Improving Performance on Problems with Few Labelled Data by Reusing Stacked Auto-Encoders. In: ICMLA (2014)Google Scholar
  3. 3.
    Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop (2012)Google Scholar
  4. 4.
    Becker, C., Christoudias, C., Fua, P.: Domain adaptation for microscopy imaging. IEEE Transactions on Medical Imaging, PP(99), 1–1 (2014)Google Scholar
  5. 5.
    Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Machine Learning 79(1–2), 151–175 (2009)MathSciNetGoogle Scholar
  6. 6.
    Bengio, Y.: Deep learning of representations for unsupervised and transfer learning. Journal of Machine Learning Research-Proceedings Track 27, 17–36 (2012)Google Scholar
  7. 7.
    de Chaumont, F., Dallongeville, S., Chenouard, N., Hervé, N., Pop, S., Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le Montagner, Y., et al.: Icy: an open bioimage informatics platform for extended reproducible research. Nature methods 9(7), 690–696 (2012)CrossRefGoogle Scholar
  8. 8.
    Fisker, R., Carstensen, J.M., Hansen, M.F.: Bødker, F., Mørup, S.: Estimation of nanoparticle size distributions by image analysis. Journal of Nanoparticle Research 2(3), 267–277 (2000)CrossRefGoogle Scholar
  9. 9.
    Huang, J., Gretton, A., Borgwardt, K.M., Schölkopf, B., Smola, A.J.: Correcting sample selection bias by unlabeled data. In: Advances in Neural Information Processing Systems, pp. 601–608 (2006)Google Scholar
  10. 10.
    Kandaswamy, C., Silva, L.M., Alexandre, L.M., Sousa, R., Santos, J., de Sá, J.M.: Improving transfer learning accuracy by reusing stacked denoising autoencoders. In: Proceedings of the IEEE SMC Conference (2014)Google Scholar
  11. 11.
    Kandaswamy, Chetak, Silva, Luís M., Alexandre, Luís A., Santos, Jorge M., de Sá, Joaquim Marques: Improving Deep Neural Network Performance by Reusing Features Trained with Transductive Transference. In: Wermter, Stefan, Weber, Cornelius, Duch, Włodzisław, Honkela, Timo, Koprinkova-Hristova, Petia, Magg, Sven, Palm, Günther, Villa, Alessandro E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 265–272. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  12. 12.
    Kandaswamy, C., Silva, L.M., Alexandre, L.A., Sousa, R., Santos, J.M., de Sá, J.M.: Improving transfer learning accuracy by reusing stacked denoising autoencoders. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 1380–1387. IEEE (2014)Google Scholar
  13. 13.
    Mallick, S.P., Zhu, Y., Kriegman, D.: Detecting particles in cryo-em micrographs using learned features. Journal of Structural Biology 145(1), 52–62 (2004)CrossRefGoogle Scholar
  14. 14.
    Mitchell, T.M.: The need for biases in learning generalizations. Laboratory for Computer Science Research, Rutgers Univ, Department of Computer Science (1980)Google Scholar
  15. 15.
    Monjardino, P., Rocha, S., Tavares, A.C., Fernandes, R., Sampaio, P., Salema, R., da, Câmara Machado, A.: Development of flange and reticulate wall ingrowths in maize (Zea mays L.) endosperm transfer cells. Protoplasma 250(2), 495–503 (2013)Google Scholar
  16. 16.
    Nguyen, Nhat H., Norris, Eric, Clemens, Mark G., Shin, Min C.: Rapidly Adaptive Cell Detection Using Transfer Learning with a Global Parameter. In: Suzuki, Kenji, Wang, Fei, Shen, Dinggang, Yan, Pingkun (eds.) MLMI 2011. LNCS, vol. 7009, pp. 209–216. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  17. 17.
    Olivo-Marin, J.C.: Extraction of spots in biological images using multiscale products. Pattern Recognition 35(9), 1989–1996 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1442–1449. IEEE (2014)Google Scholar
  19. 19.
    Ribeiro, E., Shah, M.: Computer vision for nanoscale imaging. Machine Vision and Applications 17(3), 147–162 (2006)CrossRefGoogle Scholar
  20. 20.
    Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011). pp. 833–840 (2011)Google Scholar
  21. 21.
    Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with multi model knowledge transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(5), 928–941 (2014)CrossRefGoogle Scholar
  22. 22.
    Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. The Journal of Machine Learning Research 11, 3371–3408 (2010)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Voss, N., Yoshioka, C., Radermacher, M., Potter, C., Carragher, B.: Dog picker and tiltpicker: software tools to facilitate particle selection in single particle electron microscopy. Journal of Structural Biology 166(2), 205–213 (2009)CrossRefGoogle Scholar
  24. 24.
    Woolford, D., Hankamer, B., Ericksson, G.: The laplacian of gaussian and arbitrary \(z\)-crossings approach applied to automated single particle reconstruction. Journal of Structural Biology 159(1), 122–134 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo Gamelas Sousa
    • 5
    • 8
  • Tiago Esteves
    • 1
    • 5
    • 8
  • Sara Rocha
    • 2
  • Francisco Figueiredo
    • 4
    • 8
  • Joaquim M. de Sá
    • 5
    • 8
  • Luís A. Alexandre
    • 6
    Email author
  • Jorge M. Santos
    • 5
    • 7
    • 8
  • Luís M. Silva
    • 3
    • 5
    • 8
  1. 1.Faculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.Centro de Biotecnologia dos Açores (CBA)Universidade dos AçoresAçoresPortugal
  3. 3.Departmet de Matemática at Universidade de AveiroAveiroPortugal
  4. 4.Instituto de Biologia Molecular e Celular (IBMC)PortoPortugal
  5. 5.Instituto de Engenharia Biomédica (INEB)PortoPortugal
  6. 6.Instituto Telecomunicações (IT)Universidade da Beira InteriorCovilhãPortugal
  7. 7.Instituto Superior de EngenhariaPolitécnico do PortoPortoPortugal
  8. 8.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal

Personalised recommendations