How to Search Optimal Solutions in Big Spaces with Networks of Bio-Inspired Processors

  • José Ramón Sánchez CousoEmail author
  • Sandra Gómez Canaval
  • David Batard Lorenzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)


Searching for new efficient and exact heuristic optimization algorithms in big search spaces currently remains as an open problem. The search space increases exponentially with the problem size, making impossible to find a solution through a mere blind search. Several heuristic approaches inspired by nature have been adopted as suitable algorithms to solve complex optimization problems in many different areas. Networks of Bio-inspired Processors (NBP) is a formal framework formed of highly parallel and distributed computing models inspired and abstracted by biological evolution. From a theoretical point of view, NBP has been proved broadly to be an efficient solving of NP complete problems. The aim of this paper is to explore the expressive power of NBP to solve hard optimization problems with a big search space, using massively parallel architectures. We use the basic concepts and principles of some metaheuristic approaches to propose an extension of the NBP model, which is able to solve actual problems in the optimization field from a practical point of view.


Natural computing Bioinspired computational models Networks of bioinspired processors Optimization metaheuristics Distributed and parallel algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alarcón, P., Arroyo, F., Mitrana, V.: Networks of Polarized Evolutionary Processors. Information Sciences 265, 189–197 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arroyo, F., Castellanos, J., Mitrana, V., Santos, E., Sempere, J.M.: Networks of Bio-inspired Processors, pp. 25–57. TRIANGLE. URV Publications (2012)Google Scholar
  3. 3.
    Arroyo, F., Gómez Canaval, S., Mitrana, V., Popescu, Ş.: Networks of polarized evolutionary processors are computationally complete. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 101–112. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Birattari, M., Paquete, L., Stutzle, T., Varrentrapp, K.: Classification of Metaheuristics and Design of Experiments for the Analysis of Components. Technical Report AIDA-01-05, Technische Universitat Darmstadt, Darmstadt, Germany (2001)Google Scholar
  5. 5.
    Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Journal of Information Sciences. 237, 82–117 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Campos, M., Sempere, J.M.: Accepting Networks of Genetic Processors are computationally complete. Theoretical Computer Science. 456, 18–29 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Errico, L., Jesshope, C.: Towards a new architecture for symbolic processing. Artificial Intelligence and Information-Control Systems of Robots, World Sci. Publ., Singapore, 31–40 (1994)Google Scholar
  8. 8.
    Gómez Canaval, S., Sánchez, J.R., Arroyo, F.: Simulating metabolic processes using an architecture based on networks of bio-inspired processors. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 255–256. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  9. 9.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete problems with networks of evolutionary processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, p. 621. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  10. 10.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Networks of Evolutionary Processors. Acta Informática 39, 517–529 (2003)zbMATHGoogle Scholar
  11. 11.
    Hillis, D.W.: The Connection Machine. MIT Press A.I. Memo No. 646 (1981)Google Scholar
  12. 12.
    Manea, F., Margenstern, M., Mitrana, V., Pérez-Jiménez, M.J.: A New Characterization of NP, P, and PSPACE with Accepting Hybrid Networks of Evolutionary Processors. Journal of Theory of Computing Systems 46, 174–192 (2010)zbMATHCrossRefGoogle Scholar
  13. 13.
    Manea, F., Martín-Vide, C., Mitrana, V.: On the Size Complexity of Universal Accepting Hybrid Networks of Evolutionary Processors. Mathematical Structures in Computer Science 17, 753–771 (2007)zbMATHCrossRefGoogle Scholar
  14. 14.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting networks of splicing processors: Complexity results. Journal of Theoretical Computer Science 371(1), 72–82 (2007)zbMATHCrossRefGoogle Scholar
  15. 15.
    Manea, F., Martín-Vide, C., Mitrana, V.: Accepting Networks of Evolutionary Word and Picture Processors: A survey, pp. 523–560. Frontiers in Mathematical Linguistics and Language Theory, World Scientific (2010)Google Scholar
  16. 16.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A new class of symbolic abstract neural nets: tissue p systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, p. 290. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  17. 17.
    Martín-Vide, C., Mitrana, V., Pérez-Jiménez, M., Sancho-Caparrini, F.: Hybrid networks of evolutionary processors. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723. Springer, Heidelberg (2003) Google Scholar
  18. 18.
    Margenstern, M., Mitrana, V., Jesús Pérez-Jímenez, M.: Accepting hybrid networks of evolutionary processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Pâun, G.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (1998)CrossRefGoogle Scholar
  20. 20.
    Navarrete, C., Echeandia, M., Anguiano, E., Ortega, A., Rojas, J.: Parallel simulation of NEPs on clusters. Proc. of Int. Conf. of Web Intelligence and Intelligent Agent Technology. IEEE Computer Society 3, 171–174 (2011)Google Scholar
  21. 21.
    Nishida, T.: Membrane algorithms: approximate algorithms for NP-complete optimization problems. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of membrane computing, pp. 303–314. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Song, X., Wang, J.: An Approximate Algorithm Combining P Systems and Active Evolutionary Algorithms for Traveling Salesman Problems. International Journal of Computers Communications and Control 10(1), 89–99 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, G., Cheng, J., Gheorghe, M.: A membrane-inspired approximate algorithm for traveling salesman problems. Romanian Journal of Information Science and Technology 14(1), 3–19 (2011)Google Scholar
  24. 24.
    Zhou, F., Zhang, G., Rong, H., Gheorghe, M., Cheng, J., Ipate, F., Lefticaru, R.: A particle swarm optimization based on P systems. Proc. IEEE Sixth International Conference on Natural Computation (ICNC) 6, 3003–3007 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • José Ramón Sánchez Couso
    • 1
    Email author
  • Sandra Gómez Canaval
    • 1
  • David Batard Lorenzo
    • 2
  1. 1.Department of Computer SystemsUniversidad Politécnica de MadridMadridSpain
  2. 2.Department of Research ManagementUniversity of Informatics SciencesLa HabanaCuba

Personalised recommendations