A Proposal for Contextual Grammatical Inference

  • Leonor Becerra-BonacheEmail author
  • María Galván
  • François Jacquenet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)


Grammatical Inference deals with the learning of formal languages from data. Research in this field has mainly reduced the problem of language learning to syntax learning. Taking into account that the theoretical results obtained in Grammatical Inference show that learning formal languages only from syntax is generally hard, in this paper we propose to also take into account contextual information during the language learning process. First, we review works in the area of Artificial Intelligence that use the concept of context, and then, we present the theoretical, algorithmic and practical aspects of our proposal.


Grammatical inference Context Natural language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and Computation 75, 87–106 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Angluin, D., Becerra-Bonache, L.: Learning meaning before syntax. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 1–14. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  3. 3.
    Angluin, D., Becerra-Bonache, L.: A model of Semantics and Corrections in Language Learning. Technical Report YALE/DCS/TR-1425, Computer Science Department, Yale University (2010)Google Scholar
  4. 4.
    Angluin, D., Becerra-Bonache, L.: Effects of meaning-preserving corrections on language learning. In: International Conference on Computational Natural Language Learning (CONLL), pp. 97–105 (2011)Google Scholar
  5. 5.
    Akman, V., Surav, M.: The use of Situation Theory in Context Modeling. Computational Intelligence 13(3), 427–438 (1997)CrossRefGoogle Scholar
  6. 6.
    Barwise, J., Perry, J.: Situations and Attitudes. MIT Press, Cambridge (1983) Google Scholar
  7. 7.
    Barwise, J.: Conditionals and conditional information. In: Traugott, E.C., Ferguson, C.A., Reilly, J.S. (eds.) On Conditionals, pp. 21–54. Cambridge University Press, Cambridge (1986)CrossRefGoogle Scholar
  8. 8.
    Becerra-Bonache, L., Fromont, E., Habrard, A., Perrot, M., Sebban, M.: Speeding up Syntactic Learning Using Contextual Information. International Colloquium on Grammatical Inference (ICGI) 21, 49–53 (2012)Google Scholar
  9. 9.
    Buvač, S.: Quantificational logic of context. In: National Conference on Artificial Intelligence (AAAI), Portland, Oregon, 4–8 August 1996, vol. 1, pp. 600–606 (1996)Google Scholar
  10. 10.
    Buvač, S., Mason, I.: Propositional logic of context. In: National Conference on Artificial Intelligence (AAAI), pp. 412–419 (1993)Google Scholar
  11. 11.
    Buvač, S., Buvač, V., Mason, I.: Metamathematics of Contexts. Fundamenta Informaticae 23(3), 263–301 (1995)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: International Colloquium on Grammatical Inference (ICGI), pp. 139–152 (1994)Google Scholar
  13. 13.
    Chen, D.L.: Learning Language from Perceptual Context. Department of Computer Sciences, University of Texas at Austin, PhD. proposal (2009)Google Scholar
  14. 14.
    Chouinard, M.M., Clark, E.V.: Adult reformulations of child errors as negative evidence. Journal of Child Language 30, 637–669 (2003)CrossRefGoogle Scholar
  15. 15.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  16. 16.
    Devlin, K.: Logic and information. Cambridge University Press, New York (1991)zbMATHGoogle Scholar
  17. 17.
    Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality + compatibility. Artificial Intelligence 127(2), 221–259 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Giunchiglia, F.: Contextual reasoning. Epistemologia, XVI, pp. 345–364 (1993)Google Scholar
  19. 19.
    Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Gold, E.M.: Language identification in the limit. Information and Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  21. 21.
    Goldwasser, D., Roth, D.: Learning from natural instructions. Machine Learning 94(2), 205–232 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Guha, R.V., Lenat, D.B.: Cyc: A midterm report. AI Magazine 11(3), 32–59 (1990)Google Scholar
  23. 23.
    Guha, R.V.: Contexts: A formalization and some applications. Stanford PhD Thesis (1991)Google Scholar
  24. 24.
    MacWhinney, B.: The CHILDES Project: Tools for analyzing talk, 3rd edn. Lawrence Erlbaum Associates, Mahwah (2000)Google Scholar
  25. 25.
    Makarios, S.: A Model Theory for a Quantified Generalized Logic of Contexts. Technical Report KSL-06-08, Knowledge Systems, AI Laboratory (2006)Google Scholar
  26. 26.
    McCarthy, J.: Generality in Artificial. Communication of the ACM 30(12), 1029–1035 (1987)CrossRefGoogle Scholar
  27. 27.
    McCarthy, J.: Notes on Formalizing Context. In: Proceedings of the Thirteenth International Joint Conference in Artificial Intelligence (IJCAI-1993), Chambery, France, pp. 555–560 (1993)Google Scholar
  28. 28.
    Nickles, M., Rettinger, A.: Interactive Relational Reinforcement Learning of Concept Semantics. Machine Learning 94(2), 169–204 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Oncina, J., García, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition, pp. 99–108. World Scientific Publishing, Singapore (1992)Google Scholar
  30. 30.
    Stolcke, A., Feldman, J.A., Lakoff, G., Weber, S.: Miniature Language Acquisition: A Touchstone for Cognitive Science. Cognitive Science, pp. 686–693 (1994)Google Scholar
  31. 31.
    Surav, M., Akman, V.: Modeling Context with Situations. In: IJCAI-95 Workshop on Modeling Context in Knowledge Representation and Reasoning, Research Report 95/11, LAFORIA, pp. 145–156 (1995)Google Scholar
  32. 32.
    Valiant, L.G.: A Theory of the Learnable. Communication of the ACM 27(11), 1134–1142 (1984)zbMATHCrossRefGoogle Scholar
  33. 33.
    Vanzo, A., Croce, D., Basili, R.: A context-based model for sentiment analysis in Twitter. In: International Conference on Computational Linguistics (COLING), pp. 2345–2354 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonor Becerra-Bonache
    • 1
    Email author
  • María Galván
    • 1
  • François Jacquenet
    • 1
  1. 1.Laboratoire Hubert CurienJean Monnet UniversitySaint-EtienneFrance

Personalised recommendations