Advertisement

A Detection System for Vertical Slot Fishways Using Laser Technology and Computer Vision Techniques

  • Angel J. Rico-DiazEmail author
  • Alvaro Rodriguez
  • Daniel Villares
  • Juan R. Rabuñal
  • Jeronimo Puertas
  • Luis Pena
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)

Abstract

Vertical slot fishways are structures that are placed in rivers to allow fish to avoid obstacles such as dams, hydroelectric plants. Knowing the frequency with which fish go through this type of structures can help to determine their efficiency, as well as know migratory features from species, determine if the fluvial course is healthy or if it is possible to fish with fauna preservation guarantees.

A non-invasive method for fish detection, without the need of direct observation, which uses a laser sensor and computer vision techniques to detect fish, is proposed in this work.

Keywords

Computer vision Fishways Fish counter Laser detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, S., Rajaratma, N., Katopodis, C.: Structure of flow in vertical slot fishways. Journal of Hydraulic Engineering 125, 351–360 (1999)CrossRefGoogle Scholar
  2. 2.
    Puertas, J., Pena, L., Teijeiro, T.: An Experimental Approach to the Hydraulics of Vertical Slot Fishways. Journal of Hydraulics Engineering 130 (2004)Google Scholar
  3. 3.
    Tarrade, L., Texier, A., David, L., Larinier, M.: Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 609, 177–188 (2008)CrossRefGoogle Scholar
  4. 4.
    Dewar, H., Graham, J.: Studies of tropical tuna swimming performance in a large water tunnel– Energetics. Journal of Experimental Biology 192, 13–31 (1994)Google Scholar
  5. 5.
    Blake, R.W.: Fish functional design and swimming performance. Journal of fish biology 65, 1193–1222 (2004)CrossRefGoogle Scholar
  6. 6.
    Rodriguez, A., Bermudez, M., Rabuñal, J., Puertas, J., Dorado, J., Balairon, L.: Optical Fish Trajectory Measurement in Fishways through Computer Vision and Artificial Neural Networks. Journal of Computing in Civil Engineering 25, 291–301 (2011)CrossRefGoogle Scholar
  7. 7.
    Puertas, J., Cea, L., Bermudez, M., Pena, L., Rodriguez, A., Rabuñal, J., et al.: Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecological Engineering 48, 51–60 (2012)CrossRefGoogle Scholar
  8. 8.
    Craig, R.E., Forbes, S.T.: Design of a sonar for fish counting (1969)Google Scholar
  9. 9.
    Ehrenberg, J.E.: A method for extracting the fish target strength distribution from acoustic echoes. In: Ocean 72-IEEE International Conference on Engineering in the Ocean Environment, pp. 61–64 (1972)Google Scholar
  10. 10.
    Balk, H., Lindem, T.: Improved fish detection in data from split-beam sonar. Aquatic Living Resources 13, 297–303 (2000)CrossRefGoogle Scholar
  11. 11.
    Belcher, E., Matsuyama, B., Trimble, G.: Object identification with acoustic lenses. In: MTS/IEEE Conference and Exhibition OCEANS, pp. 6–11 (2001)Google Scholar
  12. 12.
    Han, J., Honda, N., Asada, A., Shibata, K.: Automated acoustic method for counting and sizing farmed fish during transfer using DIDSON. Fisheries Science 75, 1359–1367 (2009)CrossRefGoogle Scholar
  13. 13.
    Holmes, J.A., Cronkite, G.M., Enzenhofer, H.J., Mulligan, T.J.: Accuracy and precision of fish-count data from a “dual-frequency identification sonar”(DIDSON) imaging system. ICES Journal of Marine Science: Journal Du Conseil 63, 543–555 (2006)CrossRefGoogle Scholar
  14. 14.
    Mitra, V., Wang, C.-J., Banerjee, S.: Lidar detection of underwater objects using a neuro-SVM-based architecture. IEEE Transactions on Neural Networks 17, 717–731 (2006)CrossRefGoogle Scholar
  15. 15.
    Baumgartner, L., Bettanin, M., McPherson, J., Jones, M., Zampatti, B., Beyer, K.: Assessment of an infrared fish counter (Vaki Riverwatcher) to quantify fish migrations in the Murray-Darling Basin. Industry & Investment NSW, Fisheries Final Report Series 116, 47 (2010)Google Scholar
  16. 16.
    White, D., Svellingen, C., Strachan, N.: Automated measurement of species and length of fish by computer vision. Fisheries Research 80, 203–210 (2006)CrossRefGoogle Scholar
  17. 17.
    Zion, B., Alchanatis, V., Ostrovsky, V., Barki, A., Karplus, I.: Real-time underwater sorting of edible fish species. Computers and Electronics in Agriculture 56, 34–45 (2007)CrossRefGoogle Scholar
  18. 18.
    Storbeck, F., Daan, B.: Fish species recognition using computer vision and a neural network. Fisheries Research 51, 11–15 (2001)CrossRefGoogle Scholar
  19. 19.
    Coifman, B., Beymer, D., McLauchlan, P., Malik, J.: A real-time computer vision system for vehicle tracking and traffic surveillance. Transportation Research Part C: Emerging Technologies 6, 271–288 (1998)CrossRefGoogle Scholar
  20. 20.
    Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: IEEE ICCV, pp. 1–19 (1999)Google Scholar
  21. 21.
    KaewTraKulPong, P., Bowden, R., An improved adaptive background mixture model for real-time tracking with shadow detection. In: Video-based surveillance systems, pp. 135–144. Springer (2002)Google Scholar
  22. 22.
    Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, pp. 28–31 (2004)Google Scholar
  23. 23.
    Godbehere, A.B., Matsukawa, A., Goldberg, K.: Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. American Control Conference (ACC) 2012, 4305–4312 (2012)Google Scholar
  24. 24.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 532–550 (1987)Google Scholar
  25. 25.
    Morales R.R., Azuela, J.H.S., Procesamiento y análisis digital de imágenes. Ra-Ma (2011)Google Scholar
  26. 26.
    Ochoa Somuanom, J., Pérez Lara, C., Toscano Martínez, J.H., Pereyra Ramos, C.G.: Clasificación de objetos rígidos a partir de imágenes digitales empleando los momentos invariantes de Hu. Presented at the X Congreso Internacional Sobre Innovación y Desarrollo Tecnológico, Cuernavaca Morelos, México (2013)Google Scholar
  27. 27.
    Pajares Martinsanz, G., De la Cruz García, J.: Visión por computador imágenes digitales y aplicaciones, 2ª edn. Ra-Ma (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Angel J. Rico-Diaz
    • 1
    • 2
    Email author
  • Alvaro Rodriguez
    • 1
  • Daniel Villares
    • 2
  • Juan R. Rabuñal
    • 2
  • Jeronimo Puertas
    • 3
  • Luis Pena
    • 3
  1. 1.Dept. of Information and Communication TechnologiesUniversity of A Coruña. Campus de ElviñaA CoruñaSpain
  2. 2.Innovations in Construction and Civil Engineering (CITEEC)University of A Coruña. Campus de ElviñaA CoruñaSpain
  3. 3.Dept. of Hydraulic Engineering, ETSECCPUniversity of A Coruña. Campus de ElviñaA CoruñaSpain

Personalised recommendations