Authentication of Brain-Computer Interface Users in Network Applications

  • M. A. Lopez-GordoEmail author
  • R. Ron-Angevin
  • F. Pelayo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)


Cognitive biometrics aims to user authentication (or identification) by direct measure of electrophysiological signals as response to specific stimuli. In the literature, authentication paradigms for network applications are intended for healthy and independent users with complete control of their muscles. This excludes people with severe motor impairment, such as Brain-computer interface (BCI) users. Conversely, BCIs permit communication with users even in extreme impairment conditions, such as those suffering from locked-in syndrome or in advanced stage of Amyotrophic lateral sclerosis. The downside of BCIs is their very poor performance that, measured in terms of throughput and bit error rate, could lead to impracticable authentication. Specifically, current network applications require users to type long usernames and passwords formed with characters chosen from a large dataset. This forces long BCI sessions that users can not afford due to their heavy cognitive workload. In this paper we present some EEG-based authentication approaches and discuss some relevant aspects that a BCI-based authentication approach should consider for users with severe motor impairment.


Brain-Computer Interface Cognitive biometrics Electroencephalography (EEG) Brain-area networks Authentication Network applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wayman, J. (ed.): Biometric systems: technology, design, and performance evaluation. Springer, London (2005)Google Scholar
  2. 2.
    Pankanti, S., Prabhakar, S., Jain, A.K.: On the individuality of fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1010–1025 (2002)CrossRefGoogle Scholar
  3. 3.
    Duta, N., Jain, A.K., Mardia, K.V.: Matching of palmprints. Pattern Recognit. Lett. 23(4), 477–485 (2002)zbMATHCrossRefGoogle Scholar
  4. 4.
    Aghili, B., Sadjedi, H.: Personal authentication using hand geometry. Presented at the International Conference on Computational Intelligence and Software Engineering, CiSE 2009, pp. 1–4 (2009)Google Scholar
  5. 5.
    Daugman, J.: Recognizing persons by their iris patterns. In: Jain, A.K., Bolle, R., Pankanti, S. (eds.) Biometrics, pp. 103–121. Springer US, Boston, MA (1999)CrossRefGoogle Scholar
  6. 6.
    Samal, A., Iyengar, P.A.: Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recognit. 25(1), 65–77 (1992)CrossRefGoogle Scholar
  7. 7.
    Biel, L., Pettersson, O., Philipson, L., Wide, P.: ECG analysis: a new approach in human identification. IEEE Trans. Instrum. Meas. 50(3), 808–812 (2001)CrossRefGoogle Scholar
  8. 8.
    Revett, K., Deravi, F., Sirlantzis, K.: Biosignals for user authentication - towards cognitive biometrics? Presented at the 2010 International Conference on Emerging Security Technologies, pp. 71–76 (2010)Google Scholar
  9. 9.
    Poulos, M., Rangoussi, M., Chrissikopoulos, V., Evangelou, A.: Person identification based on parametric processing of the EEG. Presented at the 6th IEEE International Conference on Electronics, Circuits and Systems. Proceedings of ICECS 1999, vol. 1, pp. 283–286 (1999)Google Scholar
  10. 10.
    Marcel, S., Millan, J.R.: Person Authentication Using Brainwaves (EEG) and Maximum A Posteriori Model Adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 743–752 (2007)CrossRefGoogle Scholar
  11. 11.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature 398(6725), 297–298 (1999)CrossRefGoogle Scholar
  12. 12.
    Bensch, M., Karim, A.A., Mellinger, J., Hinterberger, T., Tangermann, M., Bogdan, M., Rosenstiel, W., Birbaumer, N.: Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients. Comput. Intell. Neurosci. 2007, 1–5 (2007)CrossRefGoogle Scholar
  13. 13.
    Finke, A., Lenhardt, A., Ritter, H.: The MindGame: A P300-based brain–computer interface game. Neural Netw. 22(9), 1329–1333 (2009)CrossRefGoogle Scholar
  14. 14.
    Lopez, M.A., Pomares, H., Damas, M., Prieto, A.G., de la Plaza Hernandez, E.M.: Use of kohonen maps as feature selector for selective attention brain-computer interfaces. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 407–415. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    López, M., Pomares, H., Damas, M., Madrid, E., Prieto, A.G., Pelayo, F.J., de la Plaza Hernández, E.M.: Use of ANNs as classifiers for selective attention brain-computer interfaces. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 956–963. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Volosyak, I., Moor, A., Gräser, A.: A dictionary-driven SSVEP speller with a modified graphical user interface. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 353–361. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Volosyak, I.: SSVEP-based Bremen–BCI interface—boosting information transfer rates. J. Neural Eng. 8(3), 036020 (2011)CrossRefGoogle Scholar
  18. 18.
    Lee, H.J., Kim, H.S., Park, K.S.: A study on the reproducibility of biometric authentication based on electroencephalogram (EEG), pp. 13–16 (2013)Google Scholar
  19. 19.
    Palaniappan, R., Ravi, K.V.R.: A new method to identify individuals using signals from the brain, vol. 3, pp. 1442–1445 (2003)Google Scholar
  20. 20.
    Palaniappan, R., Ravi, K.V.R.: Improving visual evoked potential feature classification for person recognition using PCA and normalization. Pattern Recognit. Lett. 27(7), 726–733 (2006)CrossRefGoogle Scholar
  21. 21.
    Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: Multi-factor EEG-based user authentication, pp. 4029–4034 (2014)Google Scholar
  22. 22.
    Cecotti, H., Rivet, B., Congedo, M., Jutten, C., Bertrand, O., Maby, E., Mattout, J.: A robust sensor-selection method for P300 brain–computer interfaces. J. Neural Eng. 8(1), 016001 (2011)CrossRefGoogle Scholar
  23. 23.
    Palaniappan, R., Gosalia, J., Revett, K., Samraj, A.: PIN generation using single channel EEG biometric. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part IV. CCIS, vol. 193, pp. 378–385. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Thorpe, J., van Oorschot, P.C., Somayaji, A.: Pass-thoughts: authenticating with our minds, p. 45 (2005)Google Scholar
  25. 25.
    Paranjape, R.B., Mahovsky, J., Benedicenti, L., Koles, Z.: The electroencephalogram as a biometric, vol. 2, pp. 1363–1366 (2001)Google Scholar
  26. 26.
    Klonovs, J., Petersen, C.K., Olesen, H., Hammershoj, A.: ID Proof on the Go: Development of a Mobile EEG-Based Biometric Authentication System. IEEE Veh. Technol. Mag. 8(1), 81–89 (2013)CrossRefGoogle Scholar
  27. 27.
    Hema, C.R., Osman, A.A.: Single trial analysis on EEG signatures to identify individuals, pp. 1–3 (2010)Google Scholar
  28. 28.
    Rizwan-i-Haque, I., Khan, M.F., Saleem, M., Rao, N.I.: Network weight adjustment in a fractional fourier transform based multi-channel brain computer interface for person authentication, pp. 900–905 (2012)Google Scholar
  29. 29.
    Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., Ruffini, G.: Unobtrusive Biometric System Based on Electroencephalogram Analysis. EURASIP J. Adv. Signal Process. 2008(1), 143728 (2008)CrossRefGoogle Scholar
  30. 30.
    Safont, G., Salazar, A., Soriano, A., Vergara, L.: Combination of multiple detectors for EEG based biometric identification/authentication, pp. 230–236 (2012)Google Scholar
  31. 31.
    The Smart Grid Interoperability Panel–Smart Grid Cybersecurity Committee: Guidelines for smart grid cybersecurity. National Institute of Standards and Technology, NIST IR 7628r1 (September 2014)Google Scholar
  32. 32.
    Bhattasali, T., Saeed, K., Chaki, N., Chaki, R.: A survey of security and privacy issues for biometrics based remote authentication in cloud. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 112–121. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  33. 33.
    Kalra, S., Lamba, A.: A survey on multimodal biometric. Int. J. Comput. Sci. Inf. Technol. 5(2), 2148–2151 (2014)Google Scholar
  34. 34.
    Verma, D., Dubey, S.: A Survey on Biometric Authentication Techniques Using Palm Vein Feature. J. Glob. Res. Comput. Sci. 5(8), 5–8 (2014)Google Scholar
  35. 35.
    Hakvoort, G., Gürkök, H., Plass-Oude Bos, D., Obbink, M., Poel, M.: Measuring immersion and affect in a brain-computer interface game. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part I. LNCS, vol. 6946, pp. 115–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Lopez-Gordo, M.A., Pelayo, F., Prieto, A.: A high performance SSVEP-BCI without gazing. In: The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, pp. 193–197 (2010)Google Scholar
  37. 37.
    Wang, H., Zhang, C., Shi, T., Wang, F., Ma, S.: Real-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction. Int. J. Neural Syst., p. 1550002 (November 2014)Google Scholar
  38. 38.
    Gao, X., Xu, D., Cheng, M., Gao, S.: A BCI-Based Environmental Controller for the Motion-Disabled. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 137–140 (2003)CrossRefGoogle Scholar
  39. 39.
    Spüler, M., Rosenstiel, W., Bogdan, M.: Online Adaptation of a c-VEP Brain-Computer Interface(BCI) Based on Error-Related Potentials and Unsupervised Learning. PLoS ONE 7(12), e51077 (2012)CrossRefGoogle Scholar
  40. 40.
    Lopez-Gordo, M.A., Ron-Angevin, R., Pelayo Valle, F.: Auditory brain-computer interfaces for complete locked-in patients. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 378–385. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  41. 41.
    Kübler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., Birbaumer, N.: Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Arch. Phys. Med. Rehabil. 82(11), 1533–1539 (2001)CrossRefGoogle Scholar
  42. 42.
    Iversen, I.H., Ghanayim, N., Kübler, A., Neumann, N., Birbaumer, N., Kaiser, J.: A brain–computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin. Neurophysiol. 119(10), 2214–2223 (2008)CrossRefGoogle Scholar
  43. 43.
    Lopez-Gordo, M.A., Pelayo, F., Prieto, A., Fernandez, E.: An Auditory Brain-Computer Interface with Accuracy Prediction. Int. J. Neural Syst. 22(3), 1–14 (2012)CrossRefGoogle Scholar
  44. 44.
    Lopez-Gordo, M.A., Pelayo, F.: A Binary Phase-Shift Keying Receiver for the Detection of Attention to Human Speech. Int. J. Neural Syst., p. 130418190845004 (March 2013)Google Scholar
  45. 45.
    Ron-Angevin, R., Varona-Moya, S., da Silva-Sauer, L., Carrion-Robles, T.: A brain–computer interface speller with a reduced matrix: a case study in a patient with amyotrophic lateral sclerosis. Presented at the COGNITIVE 2014: The Sixth International Conference on Advanced Cognitive Technologies and Applications (2014)Google Scholar
  46. 46.
    Ron-Angevin, R., Lopez, M.A., Pelayo, F.: The training issue in brain-computer interface: a multi-disciplinary field. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 666–673. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. A. Lopez-Gordo
    • 1
    • 2
    Email author
  • R. Ron-Angevin
    • 3
  • F. Pelayo
    • 4
  1. 1.Department of Signal Theory, Communications and NetworkingUniversity of GranadaGranadaSpain
  2. 2.Nicolo AssociationGranadaSpain
  3. 3.Department of Electronics TechnologyE.T.S.I. Telecomunicación, Campus Universitario de Teatinos, University of MalagaMalagaSpain
  4. 4.Department of Architecture and Technology of ComputersUniversity of GranadaGranadaSpain

Personalised recommendations