Cosmological Inhomogeneities in Alternative Gravity

  • Valerio Faraoni
Part of the Lecture Notes in Physics book series (LNP, volume 907)


This chapter studies inhomogeneities in FLRW “backgrounds” in Brans-Dicke and in \(f(\mathcal{R})\) gravity. In Brans-Dicke theory, we discuss the Clifton-Mota-Barrow and the conformally transformed Husain-Martinez-Nuñez inhomogeneous spacetimes. Then, we study the phenomenology of the apparent horizons of an \(f(\mathcal{R})\) inhomogeneity in a k = 0 FLRW universe.


Black Hole Dark Energy Line Element Apparent Horizon Naked Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amendola, L., Tsujikawa, S.: Dark Energy, Theory and Observations. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Barris, B., et al.: Twenty-three high-redshift supernovae from the Institute for Astronomy Deep Survey: doubling the supernova sample at z > 0. 7. Astrophys. J. 602, 571 (2004)Google Scholar
  3. 3.
    Barrow, J.D., Clifton, T.: Exact cosmological solutions of scale-invariant gravity theories. Class. Quantum Grav. 23, L1 (2006)zbMATHMathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Bergmann, P.G.: Comments on the scalar tensor theory. Int. J. Theor. Phys. 1, 25 (1968)CrossRefGoogle Scholar
  5. 5.
    Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961)zbMATHMathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Callan, C.G., Friedan, D., Martinez, E.J., Perry, M.J.: Strings in background fields. Nucl. Phys. B 262, 593 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    Capozziello, S., Faraoni, V.: Beyond Einstein Gravity, a Survey of Gravitational Theories for Cosmology and Astrophysics. Springer, New York (2010)Google Scholar
  8. 8.
    Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003)Google Scholar
  9. 9.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Clifton, T.: Spherically symmetric solutions to fourth-order theories of gravity. Class. Quantum Grav. 23, 7445 (2006)zbMATHMathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Clifton, T., Barrow, J.D.: The power of general relativity. Phys. Rev. D 72, 103005 (2005)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Clifton, T., Barrow, J.D.: Class. Quantum Grav. 23, 2951 (2005)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Clifton, T., Mota, D.F., Barrow, J.D.: Inhomogeneous gravity. Mon. Not. R. Astr. Soc. 358, 601 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Cognola, G., Gorbunova, O., Sebastiani, L., Zerbini, S.: On the energy issue for a class of modified higher order gravity black hole solutions. Phys. Rev. D 84, 023515 (2011)Google Scholar
  15. 15.
    De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relat. 13, 3 (2010)Google Scholar
  16. 16.
    Deruelle, N., Sasaki, M.: In: Odintsov, S.D., Sáez-Gómez, D., Xambó-Descamps, S. (eds.) Proceedings, Cosmology, the Quantum Vacuum, and Zeta Functions, Barcelona, 8–10 Mar 2010. Springer Proceedings in Physics, vol. 137, p. 247. Springer, Berlin/New York (2011)Google Scholar
  17. 17.
    Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004)zbMATHCrossRefGoogle Scholar
  18. 18.
    Faraoni, V.: Matter instability in modified gravity. Phys. Rev. D 74, 104017 (2006)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Faraoni, V.: Phys. Rev. D 75, 067302 (2007)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Faraoni, V.: Hawking temperature of expanding cosmological black holes. Phys. Rev. D 76, 104042 (2007)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Faraoni, V.: Clifton’s spherical solution in f(R) vacuum harbours a naked singularity. Class. Quantum Grav. 26, 195013 (2009)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Faraoni, V.: Black hole entropy in scalar-tensor and f(R) gravity: an overview. Entropy 12, 1246 (2010)zbMATHMathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Faraoni, V.: Jebsen-Birkhoff theorem in alternative gravity. Phys. Rev. D 81, 044002 (2010)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Faraoni, V., Nielsen, A.B.: Quasi-local horizons, horizon-entropy, and conformal field redefinitions. Class. Quantum Grav. 28, 175008 (2011)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    Faraoni, V., Vitagliano, V.: Horizon thermodynamics and spacetime mappings. Phys. Rev. D 89, 064015 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Faraoni, V., Zambrano Moreno, A.F.: Interpreting the conformal cousin of the Husain-Martinez-Nuñez solution. Phys. Rev. D 86, 084044 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Faraoni, V., Vitagliano, V., Sotiriou, T.P., Liberati, S.: Dynamical apparent horizons in inhomogeneous Brans-Dicke universes. Phys. Rev. D 86, 064040 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Fradkin, E.S., Tseytlin, A.A.: Quantum string theory effective action. Nucl. Phys. B 261, 1 (1985)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    Fujii, Y., Maeda, K.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  30. 30.
    Green, M.B., Schwarz, G.H., Witten, E.: Superstring Theory. Cambridge University Press, Cambridge (1987)zbMATHGoogle Scholar
  31. 31.
    Hayward, S.A.: Quasilocal gravitational energy. Phys. Rev. D 49, 831 (1994)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    Knop, R., et al.: New constraints on Ω M, Ω Λ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 598, 102 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. (Suppl.) 192, 18 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Linder, E.V.: Resource Letter DEAU-1: Dark energy and the accelerating universe. Am. J. Phys. 76, 197 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Maeda, H.: Global structure and physical interpretation of the Fonarev solution for a scalar field with exponential potential. Preprint arXiv:0704.2731Google Scholar
  36. 36.
    Maeda, K., Ohta, N., Uzawa, K.: Dynamics of intersecting brane systems-Classification and their applications. J. High Energy Phys. 0906, 051 (2009)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Majhi, B.R.: Thermodynamics of Sultana-Dyer black hole. J. Cosmol. Astropart. Phys. 1405, 014 (2014)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Majhi, B.R.: Conformal transformation, near horizon symmetry, Virasoro algebra, and entropy. Phys. Rev. D 90, 044020 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    Nielsen, A.B., Firouzjaee, J.T.: Conformally rescaled spacetimes and Hawking radiation. Gen. Rel. Gravit. 45, 1815 (2013)zbMATHMathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Nordtvedt, K.: PostNewtonian metric for a general class of scalar tensor gravitational theories and observational consequences. Astrophys. J. 161, 1059 (1970)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    Nozawa, M., Maeda, H.: Dynamical black holes with symmetry in Einstein-Gauss-Bonnet gravity. Class. Quantum Grav. 25, 055009 (2008)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Perlmutter, S., et al.: Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Riess, A.G., et al.: An indication of evolution of type Ia supernovae from their risetimes. Astron. J. 118, 2668 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    Riess, A.G., et al.: The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astron. J. 607, 665 (2004)CrossRefGoogle Scholar
  47. 47.
    Saida, H., Harada, T., Maeda, H.: Black hole evaporation in an expanding universe. Class. Quantum Grav. 24, 4711 (2007)zbMATHMathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Sakai, N., Barrow, J.D.: Cosmological evolution of black holes in Brans-Dicke gravity. Class. Quantum Grav. 18, 4717 (2001)zbMATHMathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Sotiriou, T.P.: f(R) gravity and scalar-tensor theory. Class. Quantum Grav. 23, 5117 (2006)Google Scholar
  50. 50.
    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)Google Scholar
  51. 51.
    Sotiriou, T.P., Faraoni, V.: Black holes in scalar-tensor gravity. Phys. Rev. Lett. 108, 081103 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Sotiriou, T.P., Liberati, S.: Metric-affine f(R) theories of gravity. Ann. Phys. (N.Y.) 322, 935 (2007)Google Scholar
  53. 53.
    Sotiriou, T.P., Liberati, S.: The metric-affine formalism of f(R) gravity. J. Phys. Conf. Ser. 68, 012022 (2007)ADSCrossRefGoogle Scholar
  54. 54.
    Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    Vollick, D.N.: Phys. Rev. D 68, 063510 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    Wagoner, R.V.: Scalar-tensor theory and gravitational waves. Phys. Rev. D 1, 3209 (1970)ADSCrossRefGoogle Scholar
  57. 57.
    Will, C.M.: Theory and Experiment in Gravitational Physics, 2nd edn. Cambridge University Press, Cambridge (1993)zbMATHCrossRefGoogle Scholar
  58. 58.
    Wiltshire, D.L.: Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term. Phys. Lett. B 169, 36 (1986)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Zakharov, A.F., Nucita, A.A., De Paolis, F., Ingrosso, G.: Solar system constraints on R n gravity. Phys. Rev. D 74, 107101 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valerio Faraoni
    • 1
  1. 1.Physics DepartmentBishop’s UniversitySherbrookeCanada

Personalised recommendations