Advertisement

Inhomogeneities in Cosmological “Backgrounds” in Einstein Theory

  • Valerio Faraoni
Part of the Lecture Notes in Physics book series (LNP, volume 907)

Abstract

This chapter discusses spherical inhomogeneities embedded in FLRW cosmological “backgrounds” in Einstein theory. We introduce the topic with the Schwarzschild-de Sitter-Kottler solution and then study a generalization, the McVittie metric (including its charged version). This family of spacetimes is further generalized and a late-time attractor of this class of solutions is found. We continue by discussing the Sultana-Dyer, Husain-Martinez-Nuñez, Fonarev, and generalized Fonarev solutions.

References

  1. 1.
    Abdalla, E., Afshordi, N., Fontanini, M., Guariento, D.C., Papantonopoulos, E.: Cosmological black holes from self-gravitating fields. Phys. Rev. D 89, 104018 (2014)ADSGoogle Scholar
  2. 2.
    Abe, S.: Stability of a collapsed scalar field and cosmic censorship. Phys. Rev. D 38, 1053 (1988)MathSciNetADSGoogle Scholar
  3. 3.
    Afshordi, N., Fontanini, M., Guariento, D.C.: Horndeski meets McVittie: a scalar field theory for accretion onto cosmological black holes. Phys. Rev. D 90, 084012 (2014)ADSGoogle Scholar
  4. 4.
    Agnese, A.G., La Camera, M.: Gravitation without black holes. Phys. Rev. D 31, 1280 (1985)MathSciNetADSGoogle Scholar
  5. 5.
    Amendola, L., Tsujikawa, S.: Dark Energy, Theory and Observations. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  6. 6.
    Babichev, E., Dokuchaev, V., Eroshenko, Yu.: Black hole mass decreasing due to phantom energy accretion. Phys. Rev. Lett. 93, 021102 (2004)ADSGoogle Scholar
  7. 7.
    Balbinot, R., Bergamini, R., Comastri, A.: Phys. Rev. D 38, 2415 (1988)MathSciNetADSGoogle Scholar
  8. 8.
    Barris, B., et al.: Twenty-three high-redshift supernovae from the Institute for Astronomy Deep Survey: doubling the supernova sample at z > 0. 7. Astrophys. J. 602, 571 (2004)Google Scholar
  9. 9.
    Bergman, O., Leipnik, R.: Phys. Rev. 107, 1157 (1957)MathSciNetADSGoogle Scholar
  10. 10.
    Bochicchio, I., Faraoni, V.: A Lemaître-Tolman-Bondi cosmological wormhole. Phys. Rev. D 82, 044040 (2010)ADSGoogle Scholar
  11. 11.
    Bona, C., Stela, J.: “Swiss cheese” models with pressure. Phys. Rev. D 36, 2915 (1987)ADSGoogle Scholar
  12. 12.
    Bonnor, W.B.: A generalization of the Einstein-Straus vacuole. Class. Quantum Grav. 17, 2739 (2000)zbMATHMathSciNetADSGoogle Scholar
  13. 13.
    Booth, I., Brits, L., Gonzalez, J.A., Van den Broeck, V.: Marginally trapped tubes and dynamical horizons. Class. Quantum Grav. 23, 413 (2006)zbMATHADSGoogle Scholar
  14. 14.
    Bousso, R.: Adventures in de Sitter space. Preprint arXiv:hep-th/0205177Google Scholar
  15. 15.
    Brevik, I., Nojiri, S., Odintsov, S.D., Vanzo, L.: Entropy and universality of the Cardy-Verlinde formula in a dark energy universe. Phys. Rev. D 70, 043520 (2004)MathSciNetADSGoogle Scholar
  16. 16.
    Brown, B.A., Lindesay, J.: Class. Quantum Grav. 26, 045010 (2009)MathSciNetADSGoogle Scholar
  17. 17.
    Brown, I., Behrend, J., Malik, K.: Gauges and cosmological backreaction. J. Cosmol. Astropart. Phys. 11, 027 (2009)ADSGoogle Scholar
  18. 18.
    Buchdahl, H.A.: Static solutions of the brans-dicke equations. Int. J. Theor. Phys. 6, 407 (1972)Google Scholar
  19. 19.
    Buchdahl, H.A.: Isotropic coordinates and Schwarzschild metric. Int. J. Theor. Phys. 24, 731 (1985)MathSciNetGoogle Scholar
  20. 20.
    Buchert, T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies. Gen. Rel. Gravit. 32, 105 (2000)zbMATHMathSciNetADSGoogle Scholar
  21. 21.
    Buchert, T.: Backreaction issues in relativistic cosmology and the dark energy debate. AIP Conf. Proc. 910, 361 (2007)MathSciNetADSGoogle Scholar
  22. 22.
    Buchert, T.: Gen. Rel. Gravit. 40, 467 (2008)zbMATHMathSciNetADSGoogle Scholar
  23. 23.
    Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quantum Grav. 19, 6109 (2002)zbMATHMathSciNetADSGoogle Scholar
  24. 24.
    Buchert, T., Carfora, M.: On the curvature of the present-day universe. Class. Quantum Grav. 25, 195001 (2008)MathSciNetADSGoogle Scholar
  25. 25.
    Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)ADSGoogle Scholar
  26. 26.
    Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003)Google Scholar
  27. 27.
    Carr, B.J.: Primordial black holes: do they exist and are they useful? Preprint astro-ph/0511743Google Scholar
  28. 28.
    Carrera, M., Giulini, D.: Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 82, 169 (2010)ADSGoogle Scholar
  29. 29.
    Carrera, M., Giulini, D.: On the generalization of McVittie’s model for an inhomogeneity in a cosmological spacetime. Phys. Rev. D 81, 043521 (2010)ADSGoogle Scholar
  30. 30.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)ADSGoogle Scholar
  31. 31.
    Castro, A., Rodriguez, M.J.: Universal properties and the first law of black hole inner mechanics. Phys. Rev. D 86, 024008 (2012)ADSGoogle Scholar
  32. 32.
    Chen, S., Jing, J.: Quasinormal modes of a black hole surrounded by quintessence. Class. Quantum Grav. 22, 4651 (2005)zbMATHMathSciNetADSGoogle Scholar
  33. 33.
    Coleman, S.R., De Luccia, F.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980)MathSciNetADSGoogle Scholar
  34. 34.
    Coley, A.A., van den Hoogen, R.J.: Dynamics of multi-scalar-field cosmological models and assisted inflation. Phys. Rev. D 62, 023517 (2000)MathSciNetADSGoogle Scholar
  35. 35.
    Cvetic, M., Larsen, F.: General rotating black holes in string theory: greybody factors and event horizons. Phys. Rev. D 56, 4994 (1997)MathSciNetADSGoogle Scholar
  36. 36.
    Cvetic, M., Larsen, F.: Greybody factors and charges in Kerr/CFT. J. High Energy Phys. 0909, 088 (2009)MathSciNetADSGoogle Scholar
  37. 37.
    Cvetic, M., Gibbons, G.W., Pope, C.N.: Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys. Rev. Lett. 106, 121301 (2011)MathSciNetADSGoogle Scholar
  38. 38.
    da Silva, A., Fontanini, M., Guariento, D.C.: How the expansion of the universe determines the causal structure of McVittie spacetimes. Phys. Rev. D 87, 064030 (2013)ADSGoogle Scholar
  39. 39.
    da Silva, A., Guariento, D.C., Molina, C.: Cosmological black holes and white holes with time-dependent mass. Phys. Rev. D 91, 084043 (2015)ADSGoogle Scholar
  40. 40.
    De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relat. 13, 3 (2010)Google Scholar
  41. 41.
    de Freitas Pacheco, J.A., Horvath, J.E.: Generalized second law and phantom cosmology. Class. Quantum Grav. 24, 5427 (2007)zbMATHADSGoogle Scholar
  42. 42.
    Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)zbMATHMathSciNetADSGoogle Scholar
  43. 43.
    Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: On the Hawking radiation as tunneling for a class of dynamical black holes. Phys. Lett. B 657, 107 (2007)zbMATHMathSciNetADSGoogle Scholar
  44. 44.
    Einstein, A., Straus, E.G.: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 17, 120 (1945)zbMATHMathSciNetADSGoogle Scholar
  45. 45.
    Einstein, A., Straus, E.G.: Corrections and additional remarks to our paper: the influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 18, 148 (1946)zbMATHMathSciNetADSGoogle Scholar
  46. 46.
    Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004)zbMATHGoogle Scholar
  47. 47.
    Faraoni, V.: Hawking temperature of expanding cosmological black holes. Phys. Rev. D 76, 104042 (2007)MathSciNetADSGoogle Scholar
  48. 48.
    Faraoni, V.: Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations. Phys. Rev. D 80, 044013 (2009)MathSciNetADSGoogle Scholar
  49. 49.
    Faraoni, V.: Evolving black hole horizons in general relativity and alternative gravity. Galaxies 1, 114 (2013)ADSGoogle Scholar
  50. 50.
    Faraoni, V., Israel, W.: Dark energy, wormholes, and the big rip. Phys. Rev. D 71, 064017 (2005)MathSciNetADSGoogle Scholar
  51. 51.
    Faraoni, V., Jacques, A.: Cosmological expansion and local physics. Phys. Rev. D 76, 063510 (2007)MathSciNetADSGoogle Scholar
  52. 52.
    Faraoni, V., Vitagliano, V.: Horizon thermodynamics and spacetime mappings. Phys. Rev. D 89, 064015 (2014)ADSGoogle Scholar
  53. 53.
    Faraoni, V., Zambrano Moreno, A.F.: Are quantization rules for horizon areas universal? Phys. Rev. D 88, 044011 (2013)ADSGoogle Scholar
  54. 54.
    Faraoni, V., Gao, C., Chen, X., Shen, Y.-G.: What is the fate of a black hole embedded in an expanding universe? Phys. Lett. B 671, 7 (2009)MathSciNetADSGoogle Scholar
  55. 55.
    Faraoni, V., Zambrano Moreno, A.F., Nandra, R.: Making sense of the bizarre behavior of horizons in the McVittie spacetime. Phys. Rev. D 85, 083526 (2012)ADSGoogle Scholar
  56. 56.
    Faraoni, V., Zambrano Moreno, A.F., Prain, A.: Charged McVittie spacetime. Phys. Rev. D 89, 103514 (2013)ADSGoogle Scholar
  57. 57.
    Farhi, E., Guth, A.H., Guven, J.: Is it possible to create a universe in the laboratory by quantum tunneling? Nucl. Phys. B 339, 417 (1990)MathSciNetADSGoogle Scholar
  58. 58.
    Ferraris, M., Francaviglia, M., Spallicci, A.: Associated radius, energy and pressure of McVittie’s metric in its astrophysical application. Nuovo Cimento 111B, 1031 (1996)ADSGoogle Scholar
  59. 59.
    Figueras, P., Hubeny, V.E., Rangamani, M., Ross, S.F.: Dynamical black holes and expanding plasmas. J. High Energy Phys. 0904, 137 (2009)ADSGoogle Scholar
  60. 60.
    Finch, T.K., Lindesay, J.: Global causal structure of a transient black object. Preprint arXiv:1110.6928Google Scholar
  61. 61.
    Fisher, I.Z.: Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 18, 636 (1948) (translated in arXiv:gr-qc/9911008)Google Scholar
  62. 62.
    Fonarev, O.A.: Exact Einstein scalar field solutions for formation of black holes in a cosmological setting. Class. Quantum Grav. 12, 1739 (1995)zbMATHMathSciNetADSGoogle Scholar
  63. 63.
    Galli, P., Ortin, T., Perz, J., Shahbazi, C.S.: Non-extremal black holes of \(N = 2,d = 4\) supergravity. J. High Energy Phys. 1107, 041 (2011)Google Scholar
  64. 64.
    Gao, C.J., Zhang, S.N.: Reissner-Nordstrom metric in the Friedman-Robertson-Walker universe. Phys. Lett. B 595, 28 (2004)zbMATHMathSciNetADSGoogle Scholar
  65. 65.
    Gao, C.J., Zhang, S.N.: Higher dimensional Reissner-Nordstrom-FRW metric. Gen. Rel. Gravit. 38, 23 (2006)zbMATHADSGoogle Scholar
  66. 66.
    Gao, C., Chen, X., Faraoni, V., Shen, Y.-G.: Does the mass of a black hole decrease due to accretion of phantom energy? Phys. Rev. D 78, 024008 (2008)ADSGoogle Scholar
  67. 67.
    Gao, C., Chen, X., Shen, Y.-G., Faraoni, V.: Black holes in the universe: generalized Lemaître-Tolman-Bondi solutions. Phys. Rev. D 84, 104047 (2011)ADSGoogle Scholar
  68. 68.
    Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3D conformally invariant theory. Class. Quantum Grav. 28, 045005 (2011)MathSciNetADSGoogle Scholar
  69. 69.
    Gonzalez, J.A., Guzman, F.S.: Accretion of phantom scalar field into a black hole. Phys. Rev. D 79, 121501 (2009)ADSGoogle Scholar
  70. 70.
    Gonzalez-Diaz, P.F., Siguenza, C.L.: Phantom thermodynamics. Nucl. Phys. B 697, 363 (2004)ADSGoogle Scholar
  71. 71.
    Green, S.R., Wald, R.M.: New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D 83, 084020 (2011)ADSGoogle Scholar
  72. 72.
    Guariento, D.C., Horvath, J.E., Custodio, P.S., de Freitas Pacheco, J.A.: Evolution of primordial black holes in a radiation and phantom energy environment. Gen. Rel. Gravit. 40, 1593 (2008)zbMATHADSGoogle Scholar
  73. 73.
    Guo, Z.-K., Piao, Y.-S., Cai, R.-G., Zhang, Y.-Z.: Cosmological scaling solutions and cross coupling exponential potential. Phys. Lett. B 576, 12 (2003)zbMATHADSGoogle Scholar
  74. 74.
    Harada, T., Carr, B.J.: Upper limits on the size of a primordial black hole. Phys. Rev. D 71, 104009 (2005)MathSciNetADSGoogle Scholar
  75. 75.
    Harada, T., Carr, B.J.: Growth of primordial black holes in a universe containing a massless scalar field. Phys. Rev. D 71, 104010 (2005)MathSciNetADSGoogle Scholar
  76. 76.
    Harada, T., Maeda, H., Carr, B.J.: Nonexistence of self-similar solutions containing a black hole in a universe with a stiff fluid or scalar field or quintessence. Phys. Rev. D 74, 024024 (2006)ADSGoogle Scholar
  77. 77.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)zbMATHGoogle Scholar
  78. 78.
    He, X., Wang, B., Wu, S.-F., Lin, C.-Y.: Quasinormal modes of black holes absorbing dark energy. Phys. Lett. B 673, 156 (2009)MathSciNetADSGoogle Scholar
  79. 79.
    Horowitz, G.T., Maldacena, J.M., Strominger, A.: Nonextremal black hole microstates and U duality. Phys. Lett. B 383, 151 (1996)MathSciNetADSGoogle Scholar
  80. 80.
    Hsu, D.H., Jenskins, A., Wise, M.B.: Gradient instability for w < −1. Phys. Lett. B 597, 270 (2004)ADSGoogle Scholar
  81. 81.
    Hubeny, V.: The fluid/gravity correspondence: a new perspective on the membrane paradigm. Class. Quantum Grav. 28, 114007 (2011)MathSciNetADSGoogle Scholar
  82. 82.
    Husain, V., Martinez, E.A., Nuñez, D.: Exact solution for scalar field collapse. Phys. Rev. D 50, 3783 (1994)MathSciNetADSGoogle Scholar
  83. 83.
    Izquierdo, G., Pavon, D.: The Generalized second law in phantom dominated universes in the presence of black holes. Phys. Lett. B 639, 1 (2006)MathSciNetADSGoogle Scholar
  84. 84.
    Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878 (1968)ADSGoogle Scholar
  85. 85.
    Kaloper, N., Kleban, M., Martin, D.: McVittie’s legacy: black holes in an expanding universe. Phys. Rev. D 81, 104044 (2010)ADSGoogle Scholar
  86. 86.
    Kitada, Y., Maeda, K.: Cosmic no hair theorem in homogeneous space-times. 1. Bianchi models. Class. Quantum Grav. 10, 703 (1993)Google Scholar
  87. 87.
    Knop, R., et al.: New constraints on Ω M, Ω Λ, and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 598, 102 (2003)ADSGoogle Scholar
  88. 88.
    Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8, 322 (2006)ADSGoogle Scholar
  89. 89.
    Kolb, E., Marra, V., Matarrese, S.: Cosmological background solutions and cosmological backreactions. Gen. Rel. Gravit. 42, 1399 (2010)zbMATHMathSciNetADSGoogle Scholar
  90. 90.
    Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. (Suppl.) 192, 18 (2011)Google Scholar
  91. 91.
    Kottler, F.: Über die physikalischen ndlagen der Einsteinschen gravitationstheorie. Ann. Phys. (Leipzig) 361, 401 (1918)Google Scholar
  92. 92.
    Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  93. 93.
    Kustaanheimo, P., Qvist, B.: A note on some general solutions of the Einstein field equations in a spherically symmetric world. Comm. Phys. Math. Soc. Sci. Fennica 13(16), 1 (1948) (reprinted in Gen. Rel. Gravit. 30, 659 (1998))Google Scholar
  94. 94.
    Lake, K., Abdelqader, M.: More on McVittie’s legacy: a Schwarzschild-de Sitter black and white hole embedded in an asymptotically ΛCDM cosmology. Phys. Rev. D 84, 044045 (2011)ADSGoogle Scholar
  95. 95.
    Landry, P., Abdelqader, M., Lake, K.: McVittie solution with a negative cosmological constant. Phys. Rev. D 86, 084002 (2012)ADSGoogle Scholar
  96. 96.
    Larena, J.: Spatially averaged cosmology in an arbitrary coordinate system. Phys. Rev. D 79, 084006 (2009)ADSGoogle Scholar
  97. 97.
    Larena, J., Buchert, T., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies: the ‘morphon field’. Class. Quantum Grav. 23, 6379 (2006)zbMATHMathSciNetADSGoogle Scholar
  98. 98.
    Larena, J., Alimi, J.-M., Buchert, T., Kunz, M., Corasaniti, P.: Testing backreaction effects with observations. Phys. Rev. D 79, 083011 (2009)ADSGoogle Scholar
  99. 99.
    Larsen, F.: String model of black hole microstates. Phys. Rev. D 56, 1005 (1997)MathSciNetADSGoogle Scholar
  100. 100.
    Le Delliou, M., Mimoso, J.P., Mena, F.C., Fontanini, M., Guariento, D.C., Abdalla, E.: Separating expansion and collapse in general fluid models with heat flux. Phys. Rev. D 88, 027301 (2013)ADSGoogle Scholar
  101. 101.
    Li, N., Schwarz, D.J.: Onset of cosmological backreaction. Phys. Rev. D 76, 083011 (2007)ADSGoogle Scholar
  102. 102.
    Li, N., Schwarz, D.J.: Scale dependence of cosmological backreaction. Phys. Rev. D 78, 083531 (2008)ADSGoogle Scholar
  103. 103.
    Liddle, A.R., Mazumdar, A., Schunck, F.E.: Assisted inflation. Phys. Rev. D 58, 061301 (1998)ADSGoogle Scholar
  104. 104.
    Lima, J.A.S., Alcaniz, J.S.: Thermodynamics and spectral distribution of dark energy. Phys. Lett. B 600, 191 (2004)ADSGoogle Scholar
  105. 105.
    Lindesay, J.: Found. Phys. 37, 1181 (2007)zbMATHADSGoogle Scholar
  106. 106.
    Lindesay, J.: Foundations of Quantum Gravity, p. 282. Cambridge University Press, Cambridge (2013)Google Scholar
  107. 107.
    Lindesay, J., Sheldon, P.: Class. Quantum Grav. 27, 215015 (2010)MathSciNetADSGoogle Scholar
  108. 108.
    Maeda, H., Harada, T., Carr, B.J.: Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes. Phys. Rev. D 77, 024023 (2008)Google Scholar
  109. 109.
    Maeda, H., Harada, T., Carr, B.J.: Cosmological wormholes. Phys. Rev. D 79, 044034 (2009)MathSciNetADSGoogle Scholar
  110. 110.
    Majhi, B.R.: Thermodynamics of Sultana-Dyer black hole. J. Cosmol. Astropart. Phys. 1405, 014 (2014)MathSciNetGoogle Scholar
  111. 111.
    Malik, K.A., Wands, D.: Dynamics of assisted inflation. Phys. Rev. D 59, 123501 (1999)ADSGoogle Scholar
  112. 112.
    Marra, V.: A back-reaction approach to dark energy. Preprint arXiv:0803.3152Google Scholar
  113. 113.
    Marra, V., Kolb, E., Matarrese, S., Riotto, A.: Cosmological observables in a Swiss-cheese universe. Phys. Rev. D 76, 123004 (2007)ADSGoogle Scholar
  114. 114.
    Marra, V., Kolb, E., Matarrese, S.: Light-cone averages in a Swiss-cheese universe. Phys. Rev. D 77, 023003 (2008)ADSGoogle Scholar
  115. 115.
    Mashhoon, B., Partovi, M.H.: Gravitational collapse of a charged fluid sphere. Phys. Rev. D 20, 2455 (1979)ADSGoogle Scholar
  116. 116.
    McClure, M.L.: Cosmological black holes as models of cosmological inhomogeneities. PhD thesis, University of Toronto (2006)Google Scholar
  117. 117.
    McClure, M.L., Dyer, C.C.: Asymptotically Einstein-de Sitter cosmological black holes and the problem of energy conditions. Class. Quantum Grav. 23, 1971 (2006)zbMATHMathSciNetADSGoogle Scholar
  118. 118.
    McClure, M.L., Dyer, C.C.: Matching radiation-dominated and matter-dominated Einstein-de Sitter universes and an application for primordial black holes in evolving cosmological backgrounds. Gen. Rel. Gravit. 38, 1347 (2006)zbMATHMathSciNetADSGoogle Scholar
  119. 119.
    McVittie, G.C.: The mass-particle in an expanding universe. Mon. Not. R. Astr. Soc. 93, 325 (1933)ADSGoogle Scholar
  120. 120.
    Meessen, P., Ortin, T., Perz, J., Shahbazi, C.S.: Black holes and black strings of \(N = 2,d = 5\) supergravity in the H-FGK formalism. J. High Energy Phys. 1209, 001 (2012)Google Scholar
  121. 121.
    Miller, J.C., Musco, I.: Causal horizons and topics in structure formation. Preprint arXiv:1412.8660Google Scholar
  122. 122.
    Mosheni Sadjadi, H.: Generalized second law in a phantom-dominated universe. Phys. Rev. D 73, 0635325 (2006)Google Scholar
  123. 123.
    Nandra, R., Lasenby, A.N., Hobson, M.P.: The effect of a massive object on an expanding universe. Mon. Not. R. Astr. Soc. 422, 2931 (2012)ADSGoogle Scholar
  124. 124.
    Nandra, R., Lasenby, A.N., Hobson, M.P.: The effect of an expanding universe on massive objects. Mon. Not. R. Astr. Soc. 422, 2945 (2012)ADSGoogle Scholar
  125. 125.
    Nariai, H.: On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. Sci. Rep. Tohoku Univ. 34, 160 (1950)MathSciNetADSGoogle Scholar
  126. 126.
    Nariai, H.: On a new cosmological solution of Einstein’s field equations of gravitation. Sci. Rep. Tohoku Univ. 35, 62 (1951)zbMATHMathSciNetGoogle Scholar
  127. 127.
    Nojiri, S., Odintsov, S.D.: Final state and thermodynamics of a dark energy universe. Phys. Rev. D 70, 103522 (2004)MathSciNetADSGoogle Scholar
  128. 128.
    Nojiri, S., Odintsov, S.D.: Quantum escape of sudden future singularity. Phys. Lett. B 595, 1 (2004)ADSGoogle Scholar
  129. 129.
    Nolan, B.C.: Sources for McVittie’s mass particle in an expanding universe. J. Math. Phys. 34, 1 (1993)MathSciNetADSGoogle Scholar
  130. 130.
    Nolan, B.C.: A Point mass in an isotropic universe: existence, uniqueness and basic properties. Phys. Rev. D 58, 064006 (1998)MathSciNetADSGoogle Scholar
  131. 131.
    Nolan, B.C.: A Point mass in an isotropic universe. 2. Global properties. Class. Quantum Grav. 16, 1227 (1999)Google Scholar
  132. 132.
    Nolan, B.C.: A Point mass in an isotropic universe 3. The region R ≤ 2m. Class. Quantum Grav. 16, 3183 (1999)Google Scholar
  133. 133.
    Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre-Tolman-Bondi models. Class. Quantum Grav. 23, 6955 (2006)zbMATHMathSciNetADSGoogle Scholar
  134. 134.
    Paranjape, A., Singh, T.P.: The spatial averaging limit of covariant macroscopic gravity: scalar corrections to the cosmological equations. Phys. Rev. D 76, 044006 (2007)ADSGoogle Scholar
  135. 135.
    Paranjape, A., Singh, T.P.: Explicit cosmological coarse graining via spatial averaging. Gen. Rel. Gravit. 40, 139 (2008)zbMATHMathSciNetADSGoogle Scholar
  136. 136.
    Perlmutter, S., et al.: Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51 (1998)ADSGoogle Scholar
  137. 137.
    Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)ADSGoogle Scholar
  138. 138.
    Poisson, E., Israel, W.: The internal structure of black holes. Phys. Rev. D 41, 1796 (1990)MathSciNetADSGoogle Scholar
  139. 139.
    Ras̈änen, S.: Dark energy from backreaction. J. Cosmol. Astropart. Phys. 02, 003 (2004)Google Scholar
  140. 140.
    Räsänen, S.: Backreaction in the Lemaitre-Tolman-Bondi model. J. Cosmol. Astropart. Phys. 11, 010 (2004)Google Scholar
  141. 141.
    Raychaudhuri, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)zbMATHGoogle Scholar
  142. 142.
    Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)ADSGoogle Scholar
  143. 143.
    Riess, A.G., et al.: An indication of evolution of type Ia supernovae from their risetimes. Astron. J. 118, 2668 (1999)ADSGoogle Scholar
  144. 144.
    Riess, A.G., et al.: The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49 (2001)ADSGoogle Scholar
  145. 145.
    Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astron. J. 607, 665 (2004)Google Scholar
  146. 146.
    Roberts, M.D.: Massless scalar static spheres. Astrophys. Space Sci. 200, 331 (1993)zbMATHADSGoogle Scholar
  147. 147.
    Rodrigues, M.G., Zanchin, V.T.: Charged black holes in expanding Einstein-de Sitter universes. Class. Quantum Grav. 32, 115004 (2015)ADSGoogle Scholar
  148. 148.
    Saida, H.: Hawking radiation in the Swiss-cheese universe. Class. Quantum Grav. 19, 3179 (2002)zbMATHMathSciNetADSGoogle Scholar
  149. 149.
    Saida, H., Harada, T., Maeda, H.: Black hole evaporation in an expanding universe. Class. Quantum Grav. 24, 4711 (2007)zbMATHMathSciNetADSGoogle Scholar
  150. 150.
    Shah, Y.P., Vaidya, P.C.: Gravitational field of a charged particle embedded in a homogeneous universe. Tensor 19, 191 (1968)Google Scholar
  151. 151.
    Shankaranarayanan, S.: Temperature and entropy of Schwarzschild.de Sitter space-time. Phys. Rev. D 67, 084026 (2003)Google Scholar
  152. 152.
    Sotiriou, T.P.: f(R) gravity and scalar-tensor theory. Class. Quantum Grav. 23, 5117 (2006)Google Scholar
  153. 153.
    Sotiriou, T.P.: PhD thesis, International School for Advanced Studies, Trieste (2007) (preprint arXiv:0710.4438)Google Scholar
  154. 154.
    Sotiriou, T.P.: In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, pp. 1223–1226. World Scientific, Singapore (2008) (preprint arXiv:gr-qc/0611158)Google Scholar
  155. 155.
    Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)Google Scholar
  156. 156.
    Sotiriou, T.P., Liberati, S.: Metric-affine f(R) theories of gravity. Ann. Phys. (N.Y.) 322, 935 (2007)Google Scholar
  157. 157.
    Sotiriou, T.P., Liberati, S.: The metric-affine formalism of f(R) gravity. J. Phys. Conf. Ser. 68, 012022 (2007)ADSGoogle Scholar
  158. 158.
    Sultana, J., Dyer, C.C.: Cosmological black holes: a black hole in the Einstein-de Sitter universe. Gen. Rel. Gravit. 37, 1349 (2005)zbMATHMathSciNetADSGoogle Scholar
  159. 159.
    Sun, C.-Y.: Phantom energy accretion onto black holes in a cyclic universe. Phys. Rev. D 78, 064060 (2008)ADSGoogle Scholar
  160. 160.
    Sushkov, S.V., Kim, S.-W.: Cosmological evolution of a ghost scalar field. Gen. Rel. Gravit. 36, 1671 (2004)zbMATHMathSciNetADSGoogle Scholar
  161. 161.
    Sussman, R.: Conformal structure of a Schwarzschild black hole immersed in a Friedman universe. Gen. Rel. Gravit. 17, 251 (1985)zbMATHMathSciNetADSGoogle Scholar
  162. 162.
    Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)ADSGoogle Scholar
  163. 163.
    Tsagas, C.G., Challinor, A., Maartens, R.: Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61 (2008)MathSciNetADSGoogle Scholar
  164. 164.
    Virbhadra, K.S.: Janis-Newman-Winicour and Wyman solutions are the same. Int. J. Mod. Phys. A 12, 4831 (1997)zbMATHMathSciNetADSGoogle Scholar
  165. 165.
    Visser, M.: Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole. J. High Energy Phys. 1206, 023 (2012)MathSciNetADSGoogle Scholar
  166. 166.
    Visser, M.: Area products for stationary black hole horizons. Phys. Rev. D 88, 044014 (2013)ADSGoogle Scholar
  167. 167.
    Vitagliano, V., Liberati, S., Faraoni, V.: Averaging inhomogeneities in scalar-tensor cosmology. Class. Quantum Grav. 26, 215005 (2009)MathSciNetADSGoogle Scholar
  168. 168.
    Vollick, D.N.: Phys. Rev. D 68, 063510 (2003)ADSGoogle Scholar
  169. 169.
    Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)zbMATHGoogle Scholar
  170. 170.
    Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917)Google Scholar
  171. 171.
    Weyl, H.: Gravitation und Elektrizit. Stz. Preuss. Akad. Wiss. 1, 465 (1918)Google Scholar
  172. 172.
    Weyl, H.: Space, Time, Matter. Dover, New York (1950)Google Scholar
  173. 173.
    Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007)ADSGoogle Scholar
  174. 174.
    Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99, 251101 (2007)ADSGoogle Scholar
  175. 175.
    Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981)MathSciNetADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valerio Faraoni
    • 1
  1. 1.Physics DepartmentBishop’s UniversitySherbrookeCanada

Personalised recommendations