Skip to main content

Inhomogeneities in Cosmological “Backgrounds” in Einstein Theory

  • Chapter
Cosmological and Black Hole Apparent Horizons

Part of the book series: Lecture Notes in Physics ((LNP,volume 907))

  • 1446 Accesses

Abstract

This chapter discusses spherical inhomogeneities embedded in FLRW cosmological “backgrounds” in Einstein theory. We introduce the topic with the Schwarzschild-de Sitter-Kottler solution and then study a generalization, the McVittie metric (including its charged version). This family of spacetimes is further generalized and a late-time attractor of this class of solutions is found. We continue by discussing the Sultana-Dyer, Husain-Martinez-Nuñez, Fonarev, and generalized Fonarev solutions.

One has no right to love or hate anything if one has not acquired a thorough knowledge of its nature. Great love springs from great knowledge of the beloved object, and if you know it but little you will be able to love it only a little or not at all.

—Leonardo da Vinci

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is hypothesis e) of Ref. [119].

  2. 2.

    Use \(m/\bar{r} = ma/R = m_{0}/R\), where ma is constant.

  3. 3.

    Also the known analytic solutions describing wormholes embedded in cosmological “backgrounds”, which are few, show that these wormholes evolve in time [10, 50, 109, 160].

  4. 4.

    A typographical error is present in the numerator of \(g_{00}\) in Ref. [64], but the line element appears correctly in the later references [65, 116, 117].

  5. 5.

    This fact is well known in the special case \(a \equiv 1,Q = 0\) corresponding to the Schwarzschild spacetime [19, 170].

  6. 6.

    The Einstein tensor appearing in Refs. [117] and [116] misses a scale factor in the denominators.

  7. 7.

    The analysis of Ref. [53] makes use of the line element of [64] which contains an error but the qualitative behaviour of the apparent horizons for \(\vert Q\vert \leq m_{0}\) does not change and the argument of Ref. [53], which is qualitative, is still valid.

  8. 8.

    A mixture of two perfect fluids is the matter source for the Sultana-Dyer solution (Sect. 4.7), which does not belong to the McVittie class.

  9. 9.

    In principle, one could take this vector to be spacelike instead of purely spatial.

  10. 10.

    Contrary to the McVittie spacetime, now ρ depends also on the radial coordinate.

  11. 11.

    This study analyzes a test fluid in great detail and finds the same qualitative behaviour for the mass of a black hole accreting cosmic fluid.

  12. 12.

    In principle energy can still flow superluminally inward across the cosmological horizon. The magnitude of the flux density q c decreases with the radial distance from the black hole.

  13. 13.

    This expression appears also in Ref. [43] and it can be derived also from Eq. (4.116) by expressing it in terms of R.

  14. 14.

    R(t, r) is an increasing function of r for \(r > m/2\) since, in this range, \(\frac{\partial R} {\partial r} = a\left (1 + \frac{M} {2ar}\right )\left (1 - \frac{M} {2ar}\right )\) is positive.

  15. 15.

    See Ref. [13] for scalar field sources of Lemaître-Tolman-Bondi models and the rest of this chapter for other scalar field solutions.

  16. 16.

    Beware of an error at the beginning of Ref. [48] consisting of imposing a coordinate condition which cannot be satisfied. This error was corrected in [29] and, later, in [159].

  17. 17.

    In a FLRW universe there are no spatial scalar field gradients (which would identify a preferred spatial direction) and the energy density and pressure are simply \(\rho ^{(\phi )} = \frac{\dot{\phi }^{2}} {2} + V (\phi )\), \(P^{(\phi )} = \frac{\dot{\phi }^{2}} {2} - V (\phi )\). If \(V (\phi ) = 0\), then it is \(P^{(\phi )} =\rho ^{(\phi )}\).

  18. 18.

    Sometimes one encounters in the literature also dynamical black hole spacetimes which are constructed by hand and are not known to be solutions of the Einstein equations or of the field equations of other theories of gravity (e.g., [16, 60, 105107]).

References

  1. Abdalla, E., Afshordi, N., Fontanini, M., Guariento, D.C., Papantonopoulos, E.: Cosmological black holes from self-gravitating fields. Phys. Rev. D 89, 104018 (2014)

    ADS  Google Scholar 

  2. Abe, S.: Stability of a collapsed scalar field and cosmic censorship. Phys. Rev. D 38, 1053 (1988)

    MathSciNet  ADS  Google Scholar 

  3. Afshordi, N., Fontanini, M., Guariento, D.C.: Horndeski meets McVittie: a scalar field theory for accretion onto cosmological black holes. Phys. Rev. D 90, 084012 (2014)

    ADS  Google Scholar 

  4. Agnese, A.G., La Camera, M.: Gravitation without black holes. Phys. Rev. D 31, 1280 (1985)

    MathSciNet  ADS  Google Scholar 

  5. Amendola, L., Tsujikawa, S.: Dark Energy, Theory and Observations. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  6. Babichev, E., Dokuchaev, V., Eroshenko, Yu.: Black hole mass decreasing due to phantom energy accretion. Phys. Rev. Lett. 93, 021102 (2004)

    ADS  Google Scholar 

  7. Balbinot, R., Bergamini, R., Comastri, A.: Phys. Rev. D 38, 2415 (1988)

    MathSciNet  ADS  Google Scholar 

  8. Barris, B., et al.: Twenty-three high-redshift supernovae from the Institute for Astronomy Deep Survey: doubling the supernova sample at z > 0. 7. Astrophys. J. 602, 571 (2004)

    Google Scholar 

  9. Bergman, O., Leipnik, R.: Phys. Rev. 107, 1157 (1957)

    MathSciNet  ADS  Google Scholar 

  10. Bochicchio, I., Faraoni, V.: A Lemaître-Tolman-Bondi cosmological wormhole. Phys. Rev. D 82, 044040 (2010)

    ADS  Google Scholar 

  11. Bona, C., Stela, J.: “Swiss cheese” models with pressure. Phys. Rev. D 36, 2915 (1987)

    ADS  Google Scholar 

  12. Bonnor, W.B.: A generalization of the Einstein-Straus vacuole. Class. Quantum Grav. 17, 2739 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  13. Booth, I., Brits, L., Gonzalez, J.A., Van den Broeck, V.: Marginally trapped tubes and dynamical horizons. Class. Quantum Grav. 23, 413 (2006)

    MATH  ADS  Google Scholar 

  14. Bousso, R.: Adventures in de Sitter space. Preprint arXiv:hep-th/0205177

    Google Scholar 

  15. Brevik, I., Nojiri, S., Odintsov, S.D., Vanzo, L.: Entropy and universality of the Cardy-Verlinde formula in a dark energy universe. Phys. Rev. D 70, 043520 (2004)

    MathSciNet  ADS  Google Scholar 

  16. Brown, B.A., Lindesay, J.: Class. Quantum Grav. 26, 045010 (2009)

    MathSciNet  ADS  Google Scholar 

  17. Brown, I., Behrend, J., Malik, K.: Gauges and cosmological backreaction. J. Cosmol. Astropart. Phys. 11, 027 (2009)

    ADS  Google Scholar 

  18. Buchdahl, H.A.: Static solutions of the brans-dicke equations. Int. J. Theor. Phys. 6, 407 (1972)

    Google Scholar 

  19. Buchdahl, H.A.: Isotropic coordinates and Schwarzschild metric. Int. J. Theor. Phys. 24, 731 (1985)

    MathSciNet  Google Scholar 

  20. Buchert, T.: On average properties of inhomogeneous fluids in general relativity: dust cosmologies. Gen. Rel. Gravit. 32, 105 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  21. Buchert, T.: Backreaction issues in relativistic cosmology and the dark energy debate. AIP Conf. Proc. 910, 361 (2007)

    MathSciNet  ADS  Google Scholar 

  22. Buchert, T.: Gen. Rel. Gravit. 40, 467 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  23. Buchert, T., Carfora, M.: Regional averaging and scaling in relativistic cosmology. Class. Quantum Grav. 19, 6109 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  24. Buchert, T., Carfora, M.: On the curvature of the present-day universe. Class. Quantum Grav. 25, 195001 (2008)

    MathSciNet  ADS  Google Scholar 

  25. Caldwell, R.R., Kamionkowski, M., Weinberg, N.N.: Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    ADS  Google Scholar 

  26. Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003)

    Google Scholar 

  27. Carr, B.J.: Primordial black holes: do they exist and are they useful? Preprint astro-ph/0511743

    Google Scholar 

  28. Carrera, M., Giulini, D.: Influence of global cosmological expansion on local dynamics and kinematics. Rev. Mod. Phys. 82, 169 (2010)

    ADS  Google Scholar 

  29. Carrera, M., Giulini, D.: On the generalization of McVittie’s model for an inhomogeneity in a cosmological spacetime. Phys. Rev. D 81, 043521 (2010)

    ADS  Google Scholar 

  30. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)

    ADS  Google Scholar 

  31. Castro, A., Rodriguez, M.J.: Universal properties and the first law of black hole inner mechanics. Phys. Rev. D 86, 024008 (2012)

    ADS  Google Scholar 

  32. Chen, S., Jing, J.: Quasinormal modes of a black hole surrounded by quintessence. Class. Quantum Grav. 22, 4651 (2005)

    MATH  MathSciNet  ADS  Google Scholar 

  33. Coleman, S.R., De Luccia, F.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980)

    MathSciNet  ADS  Google Scholar 

  34. Coley, A.A., van den Hoogen, R.J.: Dynamics of multi-scalar-field cosmological models and assisted inflation. Phys. Rev. D 62, 023517 (2000)

    MathSciNet  ADS  Google Scholar 

  35. Cvetic, M., Larsen, F.: General rotating black holes in string theory: greybody factors and event horizons. Phys. Rev. D 56, 4994 (1997)

    MathSciNet  ADS  Google Scholar 

  36. Cvetic, M., Larsen, F.: Greybody factors and charges in Kerr/CFT. J. High Energy Phys. 0909, 088 (2009)

    MathSciNet  ADS  Google Scholar 

  37. Cvetic, M., Gibbons, G.W., Pope, C.N.: Universal area product formulae for rotating and charged black holes in four and higher dimensions. Phys. Rev. Lett. 106, 121301 (2011)

    MathSciNet  ADS  Google Scholar 

  38. da Silva, A., Fontanini, M., Guariento, D.C.: How the expansion of the universe determines the causal structure of McVittie spacetimes. Phys. Rev. D 87, 064030 (2013)

    ADS  Google Scholar 

  39. da Silva, A., Guariento, D.C., Molina, C.: Cosmological black holes and white holes with time-dependent mass. Phys. Rev. D 91, 084043 (2015)

    ADS  Google Scholar 

  40. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relat. 13, 3 (2010)

    Google Scholar 

  41. de Freitas Pacheco, J.A., Horvath, J.E.: Generalized second law and phantom cosmology. Class. Quantum Grav. 24, 5427 (2007)

    MATH  ADS  Google Scholar 

  42. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962)

    MATH  MathSciNet  ADS  Google Scholar 

  43. Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: On the Hawking radiation as tunneling for a class of dynamical black holes. Phys. Lett. B 657, 107 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  44. Einstein, A., Straus, E.G.: The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 17, 120 (1945)

    MATH  MathSciNet  ADS  Google Scholar 

  45. Einstein, A., Straus, E.G.: Corrections and additional remarks to our paper: the influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys. 18, 148 (1946)

    MATH  MathSciNet  ADS  Google Scholar 

  46. Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004)

    MATH  Google Scholar 

  47. Faraoni, V.: Hawking temperature of expanding cosmological black holes. Phys. Rev. D 76, 104042 (2007)

    MathSciNet  ADS  Google Scholar 

  48. Faraoni, V.: Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations. Phys. Rev. D 80, 044013 (2009)

    MathSciNet  ADS  Google Scholar 

  49. Faraoni, V.: Evolving black hole horizons in general relativity and alternative gravity. Galaxies 1, 114 (2013)

    ADS  Google Scholar 

  50. Faraoni, V., Israel, W.: Dark energy, wormholes, and the big rip. Phys. Rev. D 71, 064017 (2005)

    MathSciNet  ADS  Google Scholar 

  51. Faraoni, V., Jacques, A.: Cosmological expansion and local physics. Phys. Rev. D 76, 063510 (2007)

    MathSciNet  ADS  Google Scholar 

  52. Faraoni, V., Vitagliano, V.: Horizon thermodynamics and spacetime mappings. Phys. Rev. D 89, 064015 (2014)

    ADS  Google Scholar 

  53. Faraoni, V., Zambrano Moreno, A.F.: Are quantization rules for horizon areas universal? Phys. Rev. D 88, 044011 (2013)

    ADS  Google Scholar 

  54. Faraoni, V., Gao, C., Chen, X., Shen, Y.-G.: What is the fate of a black hole embedded in an expanding universe? Phys. Lett. B 671, 7 (2009)

    MathSciNet  ADS  Google Scholar 

  55. Faraoni, V., Zambrano Moreno, A.F., Nandra, R.: Making sense of the bizarre behavior of horizons in the McVittie spacetime. Phys. Rev. D 85, 083526 (2012)

    ADS  Google Scholar 

  56. Faraoni, V., Zambrano Moreno, A.F., Prain, A.: Charged McVittie spacetime. Phys. Rev. D 89, 103514 (2013)

    ADS  Google Scholar 

  57. Farhi, E., Guth, A.H., Guven, J.: Is it possible to create a universe in the laboratory by quantum tunneling? Nucl. Phys. B 339, 417 (1990)

    MathSciNet  ADS  Google Scholar 

  58. Ferraris, M., Francaviglia, M., Spallicci, A.: Associated radius, energy and pressure of McVittie’s metric in its astrophysical application. Nuovo Cimento 111B, 1031 (1996)

    ADS  Google Scholar 

  59. Figueras, P., Hubeny, V.E., Rangamani, M., Ross, S.F.: Dynamical black holes and expanding plasmas. J. High Energy Phys. 0904, 137 (2009)

    ADS  Google Scholar 

  60. Finch, T.K., Lindesay, J.: Global causal structure of a transient black object. Preprint arXiv:1110.6928

    Google Scholar 

  61. Fisher, I.Z.: Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 18, 636 (1948) (translated in arXiv:gr-qc/9911008)

    Google Scholar 

  62. Fonarev, O.A.: Exact Einstein scalar field solutions for formation of black holes in a cosmological setting. Class. Quantum Grav. 12, 1739 (1995)

    MATH  MathSciNet  ADS  Google Scholar 

  63. Galli, P., Ortin, T., Perz, J., Shahbazi, C.S.: Non-extremal black holes of \(N = 2,d = 4\) supergravity. J. High Energy Phys. 1107, 041 (2011)

    Google Scholar 

  64. Gao, C.J., Zhang, S.N.: Reissner-Nordstrom metric in the Friedman-Robertson-Walker universe. Phys. Lett. B 595, 28 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  65. Gao, C.J., Zhang, S.N.: Higher dimensional Reissner-Nordstrom-FRW metric. Gen. Rel. Gravit. 38, 23 (2006)

    MATH  ADS  Google Scholar 

  66. Gao, C., Chen, X., Faraoni, V., Shen, Y.-G.: Does the mass of a black hole decrease due to accretion of phantom energy? Phys. Rev. D 78, 024008 (2008)

    ADS  Google Scholar 

  67. Gao, C., Chen, X., Shen, Y.-G., Faraoni, V.: Black holes in the universe: generalized Lemaître-Tolman-Bondi solutions. Phys. Rev. D 84, 104047 (2011)

    ADS  Google Scholar 

  68. Gomes, H., Gryb, S., Koslowski, T.: Einstein gravity as a 3D conformally invariant theory. Class. Quantum Grav. 28, 045005 (2011)

    MathSciNet  ADS  Google Scholar 

  69. Gonzalez, J.A., Guzman, F.S.: Accretion of phantom scalar field into a black hole. Phys. Rev. D 79, 121501 (2009)

    ADS  Google Scholar 

  70. Gonzalez-Diaz, P.F., Siguenza, C.L.: Phantom thermodynamics. Nucl. Phys. B 697, 363 (2004)

    ADS  Google Scholar 

  71. Green, S.R., Wald, R.M.: New framework for analyzing the effects of small scale inhomogeneities in cosmology. Phys. Rev. D 83, 084020 (2011)

    ADS  Google Scholar 

  72. Guariento, D.C., Horvath, J.E., Custodio, P.S., de Freitas Pacheco, J.A.: Evolution of primordial black holes in a radiation and phantom energy environment. Gen. Rel. Gravit. 40, 1593 (2008)

    MATH  ADS  Google Scholar 

  73. Guo, Z.-K., Piao, Y.-S., Cai, R.-G., Zhang, Y.-Z.: Cosmological scaling solutions and cross coupling exponential potential. Phys. Lett. B 576, 12 (2003)

    MATH  ADS  Google Scholar 

  74. Harada, T., Carr, B.J.: Upper limits on the size of a primordial black hole. Phys. Rev. D 71, 104009 (2005)

    MathSciNet  ADS  Google Scholar 

  75. Harada, T., Carr, B.J.: Growth of primordial black holes in a universe containing a massless scalar field. Phys. Rev. D 71, 104010 (2005)

    MathSciNet  ADS  Google Scholar 

  76. Harada, T., Maeda, H., Carr, B.J.: Nonexistence of self-similar solutions containing a black hole in a universe with a stiff fluid or scalar field or quintessence. Phys. Rev. D 74, 024024 (2006)

    ADS  Google Scholar 

  77. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  78. He, X., Wang, B., Wu, S.-F., Lin, C.-Y.: Quasinormal modes of black holes absorbing dark energy. Phys. Lett. B 673, 156 (2009)

    MathSciNet  ADS  Google Scholar 

  79. Horowitz, G.T., Maldacena, J.M., Strominger, A.: Nonextremal black hole microstates and U duality. Phys. Lett. B 383, 151 (1996)

    MathSciNet  ADS  Google Scholar 

  80. Hsu, D.H., Jenskins, A., Wise, M.B.: Gradient instability for w < −1. Phys. Lett. B 597, 270 (2004)

    ADS  Google Scholar 

  81. Hubeny, V.: The fluid/gravity correspondence: a new perspective on the membrane paradigm. Class. Quantum Grav. 28, 114007 (2011)

    MathSciNet  ADS  Google Scholar 

  82. Husain, V., Martinez, E.A., Nuñez, D.: Exact solution for scalar field collapse. Phys. Rev. D 50, 3783 (1994)

    MathSciNet  ADS  Google Scholar 

  83. Izquierdo, G., Pavon, D.: The Generalized second law in phantom dominated universes in the presence of black holes. Phys. Lett. B 639, 1 (2006)

    MathSciNet  ADS  Google Scholar 

  84. Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878 (1968)

    ADS  Google Scholar 

  85. Kaloper, N., Kleban, M., Martin, D.: McVittie’s legacy: black holes in an expanding universe. Phys. Rev. D 81, 104044 (2010)

    ADS  Google Scholar 

  86. Kitada, Y., Maeda, K.: Cosmic no hair theorem in homogeneous space-times. 1. Bianchi models. Class. Quantum Grav. 10, 703 (1993)

    Google Scholar 

  87. Knop, R., et al.: New constraints on Ω M , Ω Λ , and w from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope. Astrophys. J. 598, 102 (2003)

    ADS  Google Scholar 

  88. Kolb, E.W., Matarrese, S., Riotto, A.: On cosmic acceleration without dark energy. New J. Phys. 8, 322 (2006)

    ADS  Google Scholar 

  89. Kolb, E., Marra, V., Matarrese, S.: Cosmological background solutions and cosmological backreactions. Gen. Rel. Gravit. 42, 1399 (2010)

    MATH  MathSciNet  ADS  Google Scholar 

  90. Komatsu, E., et al.: Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. (Suppl.) 192, 18 (2011)

    Google Scholar 

  91. Kottler, F.: Über die physikalischen ndlagen der Einsteinschen gravitationstheorie. Ann. Phys. (Leipzig) 361, 401 (1918)

    Google Scholar 

  92. Krasiński, A.: Inhomogeneous Cosmological Models. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  93. Kustaanheimo, P., Qvist, B.: A note on some general solutions of the Einstein field equations in a spherically symmetric world. Comm. Phys. Math. Soc. Sci. Fennica 13(16), 1 (1948) (reprinted in Gen. Rel. Gravit. 30, 659 (1998))

    Google Scholar 

  94. Lake, K., Abdelqader, M.: More on McVittie’s legacy: a Schwarzschild-de Sitter black and white hole embedded in an asymptotically ΛCDM cosmology. Phys. Rev. D 84, 044045 (2011)

    ADS  Google Scholar 

  95. Landry, P., Abdelqader, M., Lake, K.: McVittie solution with a negative cosmological constant. Phys. Rev. D 86, 084002 (2012)

    ADS  Google Scholar 

  96. Larena, J.: Spatially averaged cosmology in an arbitrary coordinate system. Phys. Rev. D 79, 084006 (2009)

    ADS  Google Scholar 

  97. Larena, J., Buchert, T., Alimi, J.-M.: Correspondence between kinematical backreaction and scalar field cosmologies: the ‘morphon field’. Class. Quantum Grav. 23, 6379 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  98. Larena, J., Alimi, J.-M., Buchert, T., Kunz, M., Corasaniti, P.: Testing backreaction effects with observations. Phys. Rev. D 79, 083011 (2009)

    ADS  Google Scholar 

  99. Larsen, F.: String model of black hole microstates. Phys. Rev. D 56, 1005 (1997)

    MathSciNet  ADS  Google Scholar 

  100. Le Delliou, M., Mimoso, J.P., Mena, F.C., Fontanini, M., Guariento, D.C., Abdalla, E.: Separating expansion and collapse in general fluid models with heat flux. Phys. Rev. D 88, 027301 (2013)

    ADS  Google Scholar 

  101. Li, N., Schwarz, D.J.: Onset of cosmological backreaction. Phys. Rev. D 76, 083011 (2007)

    ADS  Google Scholar 

  102. Li, N., Schwarz, D.J.: Scale dependence of cosmological backreaction. Phys. Rev. D 78, 083531 (2008)

    ADS  Google Scholar 

  103. Liddle, A.R., Mazumdar, A., Schunck, F.E.: Assisted inflation. Phys. Rev. D 58, 061301 (1998)

    ADS  Google Scholar 

  104. Lima, J.A.S., Alcaniz, J.S.: Thermodynamics and spectral distribution of dark energy. Phys. Lett. B 600, 191 (2004)

    ADS  Google Scholar 

  105. Lindesay, J.: Found. Phys. 37, 1181 (2007)

    MATH  ADS  Google Scholar 

  106. Lindesay, J.: Foundations of Quantum Gravity, p. 282. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  107. Lindesay, J., Sheldon, P.: Class. Quantum Grav. 27, 215015 (2010)

    MathSciNet  ADS  Google Scholar 

  108. Maeda, H., Harada, T., Carr, B.J.: Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes. Phys. Rev. D 77, 024023 (2008)

    Google Scholar 

  109. Maeda, H., Harada, T., Carr, B.J.: Cosmological wormholes. Phys. Rev. D 79, 044034 (2009)

    MathSciNet  ADS  Google Scholar 

  110. Majhi, B.R.: Thermodynamics of Sultana-Dyer black hole. J. Cosmol. Astropart. Phys. 1405, 014 (2014)

    MathSciNet  Google Scholar 

  111. Malik, K.A., Wands, D.: Dynamics of assisted inflation. Phys. Rev. D 59, 123501 (1999)

    ADS  Google Scholar 

  112. Marra, V.: A back-reaction approach to dark energy. Preprint arXiv:0803.3152

    Google Scholar 

  113. Marra, V., Kolb, E., Matarrese, S., Riotto, A.: Cosmological observables in a Swiss-cheese universe. Phys. Rev. D 76, 123004 (2007)

    ADS  Google Scholar 

  114. Marra, V., Kolb, E., Matarrese, S.: Light-cone averages in a Swiss-cheese universe. Phys. Rev. D 77, 023003 (2008)

    ADS  Google Scholar 

  115. Mashhoon, B., Partovi, M.H.: Gravitational collapse of a charged fluid sphere. Phys. Rev. D 20, 2455 (1979)

    ADS  Google Scholar 

  116. McClure, M.L.: Cosmological black holes as models of cosmological inhomogeneities. PhD thesis, University of Toronto (2006)

    Google Scholar 

  117. McClure, M.L., Dyer, C.C.: Asymptotically Einstein-de Sitter cosmological black holes and the problem of energy conditions. Class. Quantum Grav. 23, 1971 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  118. McClure, M.L., Dyer, C.C.: Matching radiation-dominated and matter-dominated Einstein-de Sitter universes and an application for primordial black holes in evolving cosmological backgrounds. Gen. Rel. Gravit. 38, 1347 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  119. McVittie, G.C.: The mass-particle in an expanding universe. Mon. Not. R. Astr. Soc. 93, 325 (1933)

    ADS  Google Scholar 

  120. Meessen, P., Ortin, T., Perz, J., Shahbazi, C.S.: Black holes and black strings of \(N = 2,d = 5\) supergravity in the H-FGK formalism. J. High Energy Phys. 1209, 001 (2012)

    Google Scholar 

  121. Miller, J.C., Musco, I.: Causal horizons and topics in structure formation. Preprint arXiv:1412.8660

    Google Scholar 

  122. Mosheni Sadjadi, H.: Generalized second law in a phantom-dominated universe. Phys. Rev. D 73, 0635325 (2006)

    Google Scholar 

  123. Nandra, R., Lasenby, A.N., Hobson, M.P.: The effect of a massive object on an expanding universe. Mon. Not. R. Astr. Soc. 422, 2931 (2012)

    ADS  Google Scholar 

  124. Nandra, R., Lasenby, A.N., Hobson, M.P.: The effect of an expanding universe on massive objects. Mon. Not. R. Astr. Soc. 422, 2945 (2012)

    ADS  Google Scholar 

  125. Nariai, H.: On some static solutions of Einstein’s gravitational field equations in a spherically symmetric case. Sci. Rep. Tohoku Univ. 34, 160 (1950)

    MathSciNet  ADS  Google Scholar 

  126. Nariai, H.: On a new cosmological solution of Einstein’s field equations of gravitation. Sci. Rep. Tohoku Univ. 35, 62 (1951)

    MATH  MathSciNet  Google Scholar 

  127. Nojiri, S., Odintsov, S.D.: Final state and thermodynamics of a dark energy universe. Phys. Rev. D 70, 103522 (2004)

    MathSciNet  ADS  Google Scholar 

  128. Nojiri, S., Odintsov, S.D.: Quantum escape of sudden future singularity. Phys. Lett. B 595, 1 (2004)

    ADS  Google Scholar 

  129. Nolan, B.C.: Sources for McVittie’s mass particle in an expanding universe. J. Math. Phys. 34, 1 (1993)

    MathSciNet  ADS  Google Scholar 

  130. Nolan, B.C.: A Point mass in an isotropic universe: existence, uniqueness and basic properties. Phys. Rev. D 58, 064006 (1998)

    MathSciNet  ADS  Google Scholar 

  131. Nolan, B.C.: A Point mass in an isotropic universe. 2. Global properties. Class. Quantum Grav. 16, 1227 (1999)

    Google Scholar 

  132. Nolan, B.C.: A Point mass in an isotropic universe 3. The region R ≤ 2m. Class. Quantum Grav. 16, 3183 (1999)

    Google Scholar 

  133. Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre-Tolman-Bondi models. Class. Quantum Grav. 23, 6955 (2006)

    MATH  MathSciNet  ADS  Google Scholar 

  134. Paranjape, A., Singh, T.P.: The spatial averaging limit of covariant macroscopic gravity: scalar corrections to the cosmological equations. Phys. Rev. D 76, 044006 (2007)

    ADS  Google Scholar 

  135. Paranjape, A., Singh, T.P.: Explicit cosmological coarse graining via spatial averaging. Gen. Rel. Gravit. 40, 139 (2008)

    MATH  MathSciNet  ADS  Google Scholar 

  136. Perlmutter, S., et al.: Discovery of a supernova explosion at half the age of the Universe. Nature 391, 51 (1998)

    ADS  Google Scholar 

  137. Perlmutter, S., et al.: Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    ADS  Google Scholar 

  138. Poisson, E., Israel, W.: The internal structure of black holes. Phys. Rev. D 41, 1796 (1990)

    MathSciNet  ADS  Google Scholar 

  139. Ras̈änen, S.: Dark energy from backreaction. J. Cosmol. Astropart. Phys. 02, 003 (2004)

    Google Scholar 

  140. Räsänen, S.: Backreaction in the Lemaitre-Tolman-Bondi model. J. Cosmol. Astropart. Phys. 11, 010 (2004)

    Google Scholar 

  141. Raychaudhuri, A.K.: Theoretical Cosmology. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  142. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    ADS  Google Scholar 

  143. Riess, A.G., et al.: An indication of evolution of type Ia supernovae from their risetimes. Astron. J. 118, 2668 (1999)

    ADS  Google Scholar 

  144. Riess, A.G., et al.: The farthest known supernova: support for an accelerating universe and a glimpse of the epoch of deceleration. Astrophys. J. 560, 49 (2001)

    ADS  Google Scholar 

  145. Riess, A.G., et al.: Type Ia supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astron. J. 607, 665 (2004)

    Google Scholar 

  146. Roberts, M.D.: Massless scalar static spheres. Astrophys. Space Sci. 200, 331 (1993)

    MATH  ADS  Google Scholar 

  147. Rodrigues, M.G., Zanchin, V.T.: Charged black holes in expanding Einstein-de Sitter universes. Class. Quantum Grav. 32, 115004 (2015)

    ADS  Google Scholar 

  148. Saida, H.: Hawking radiation in the Swiss-cheese universe. Class. Quantum Grav. 19, 3179 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  149. Saida, H., Harada, T., Maeda, H.: Black hole evaporation in an expanding universe. Class. Quantum Grav. 24, 4711 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  150. Shah, Y.P., Vaidya, P.C.: Gravitational field of a charged particle embedded in a homogeneous universe. Tensor 19, 191 (1968)

    Google Scholar 

  151. Shankaranarayanan, S.: Temperature and entropy of Schwarzschild.de Sitter space-time. Phys. Rev. D 67, 084026 (2003)

    Google Scholar 

  152. Sotiriou, T.P.: f(R) gravity and scalar-tensor theory. Class. Quantum Grav. 23, 5117 (2006)

    Google Scholar 

  153. Sotiriou, T.P.: PhD thesis, International School for Advanced Studies, Trieste (2007) (preprint arXiv:0710.4438)

    Google Scholar 

  154. Sotiriou, T.P.: In: Kleinert, H., Jantzen, R.T., Ruffini, R. (eds.) Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, pp. 1223–1226. World Scientific, Singapore (2008) (preprint arXiv:gr-qc/0611158)

    Google Scholar 

  155. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Google Scholar 

  156. Sotiriou, T.P., Liberati, S.: Metric-affine f(R) theories of gravity. Ann. Phys. (N.Y.) 322, 935 (2007)

    Google Scholar 

  157. Sotiriou, T.P., Liberati, S.: The metric-affine formalism of f(R) gravity. J. Phys. Conf. Ser. 68, 012022 (2007)

    ADS  Google Scholar 

  158. Sultana, J., Dyer, C.C.: Cosmological black holes: a black hole in the Einstein-de Sitter universe. Gen. Rel. Gravit. 37, 1349 (2005)

    MATH  MathSciNet  ADS  Google Scholar 

  159. Sun, C.-Y.: Phantom energy accretion onto black holes in a cyclic universe. Phys. Rev. D 78, 064060 (2008)

    ADS  Google Scholar 

  160. Sushkov, S.V., Kim, S.-W.: Cosmological evolution of a ghost scalar field. Gen. Rel. Gravit. 36, 1671 (2004)

    MATH  MathSciNet  ADS  Google Scholar 

  161. Sussman, R.: Conformal structure of a Schwarzschild black hole immersed in a Friedman universe. Gen. Rel. Gravit. 17, 251 (1985)

    MATH  MathSciNet  ADS  Google Scholar 

  162. Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1 (2003)

    ADS  Google Scholar 

  163. Tsagas, C.G., Challinor, A., Maartens, R.: Relativistic cosmology and large-scale structure. Phys. Rep. 465, 61 (2008)

    MathSciNet  ADS  Google Scholar 

  164. Virbhadra, K.S.: Janis-Newman-Winicour and Wyman solutions are the same. Int. J. Mod. Phys. A 12, 4831 (1997)

    MATH  MathSciNet  ADS  Google Scholar 

  165. Visser, M.: Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole. J. High Energy Phys. 1206, 023 (2012)

    MathSciNet  ADS  Google Scholar 

  166. Visser, M.: Area products for stationary black hole horizons. Phys. Rev. D 88, 044014 (2013)

    ADS  Google Scholar 

  167. Vitagliano, V., Liberati, S., Faraoni, V.: Averaging inhomogeneities in scalar-tensor cosmology. Class. Quantum Grav. 26, 215005 (2009)

    MathSciNet  ADS  Google Scholar 

  168. Vollick, D.N.: Phys. Rev. D 68, 063510 (2003)

    ADS  Google Scholar 

  169. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    MATH  Google Scholar 

  170. Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917)

    Google Scholar 

  171. Weyl, H.: Gravitation und Elektrizit. Stz. Preuss. Akad. Wiss. 1, 465 (1918)

    Google Scholar 

  172. Weyl, H.: Space, Time, Matter. Dover, New York (1950)

    Google Scholar 

  173. Wiltshire, D.L.: Cosmic clocks, cosmic variance and cosmic averages. New J. Phys. 9, 377 (2007)

    ADS  Google Scholar 

  174. Wiltshire, D.L.: Exact solution to the averaging problem in cosmology. Phys. Rev. Lett. 99, 251101 (2007)

    ADS  Google Scholar 

  175. Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839 (1981)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faraoni, V. (2015). Inhomogeneities in Cosmological “Backgrounds” in Einstein Theory. In: Cosmological and Black Hole Apparent Horizons. Lecture Notes in Physics, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-19240-6_4

Download citation

Publish with us

Policies and ethics