Advertisement

Cosmological Horizons

  • Valerio Faraoni
Part of the Lecture Notes in Physics book series (LNP, volume 907)

Abstract

FLRW spacetimes are much simpler than black hole spacetimes but still contain horizons. Cosmological horizons have been studied in inflationary scenarios of the early universe. In general, FLRW spaces contain time-dependent apparent horizons expressed by simple equations. This chapter discusses such cosmological apparent horizons and their dynamics.

References

  1. 1.
    Akbar, M., Cai, R.-G.: Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 635, 7 (2006)zbMATHMathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Akbar, M., Cai, R.-G.: Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe. Phys. Rev. D 75, 084003 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: Hawking radiation as tunneling for extremal and rotating black holes. J. High Energy Phys. 05, 014 (2005)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relat. 7, 10 (2004)ADSGoogle Scholar
  5. 5.
    Bak, D., Rey, S.-J.: Cosmic holography. Class. Quantum Grav. 17, L83 (2000)zbMATHMathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Balasubramanian, V., de Boer, J., Minic, D.: Mass, entropy and holography in asymptotically de Sitter spaces. Phys. Rev. D 65, 123508 (2002)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Banks, T., Fischler, W.: An upper bound on the number of e-foldings. Preprint arXiv:astro-ph/0307459Google Scholar
  8. 8.
    Ben-Dov, I.: Outer trapped surfaces in Vaidya spacetimes. Phys. Rev. D 75, 064007 (2007)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Bengtsson, I., Senovilla, J.M.M.: Region with trapped surfaces in spherical symmetry, its core, and their boundaries. Phys. Rev. D 83, 044012 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Bhattacharya, S., Lahiri, A.: On the existence of cosmological event horizons. Class. Quantum Grav. 27, 165015 (2010)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Booth, I., Brits, L., Gonzalez, J.A., Van den Broeck, V.: Black hole boundaries. Class. Quantum Grav. 23, 413 (2006)zbMATHADSCrossRefGoogle Scholar
  13. 13.
    Bousso, R.: A covariant entropy conjecture. J. High Energy Phys. 07, 004 (1999)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Bousso, R.: Positive vacuum energy and the N bound. J. High Energy Phys. 11, 038 (2000)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Bousso, R.: Cosmology and the S-matrix. Phys. Rev. D 71, 064024 (2005)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Bousso, R.: Adventures in de Sitter space. Preprint arXiv:hep-th/0205177Google Scholar
  17. 17.
    Brustein, R., Veneziano, G.: Causal entropy bound for a spacelike region. Phys. Rev. Lett. 84, 5695 (2000)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Cai, R.-G.: Holography, the cosmological constant and the upper limit of the number of e-foldings. J. Cosmol. Astropart. Phys. 02, 007 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Cai, R.-G., Kim, S.P.: First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J. High Energy Phys. 0502, 050 (2005)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Cai, R.-G., Cao, L.-M., Hu, Y.-P.: Hawking radiation of an apparent horizon in a FRW universe. Class. Quantum Grav. 26, 155018 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Chakraborty, S., Mazumder, N., Biswas, R.: Cosmological evolution across phantom crossing and the nature of the horizon. Astrophys. Sp. Sci. 334, 183 (2011)zbMATHADSCrossRefGoogle Scholar
  22. 22.
    Collins, W.: Mechanics of apparent horizons. Phys. Rev. D 45, 495 (1992)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    Danielsson, U.H.: Transplanckian energy production and slow roll inflatioon. Phys. Rev. D 71, 023516 (2005)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    Das, A., Chattopadhyay, S., Debnath, U.: Validity of generalized second law of thermodynamics in the logamediate and intermediate scenarios of the universe. Found. Phys. 42, 266 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Davies, P.C.W.: Mining the universe. Phys. Rev. D 30, 737 (1984)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    Davies, P.C.W.: Cosmological horizons and entropy. Class. Quantum Grav. 5, 1349 (1988)zbMATHADSCrossRefGoogle Scholar
  27. 27.
    Davies, P.C.W., Ford, L.H., Page, D.N.: Gravitational entropy: beyond the black hole. Phys. Rev. D 34, 1700 (1986)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    Davis, T.M., Davies, P.C.W.: How far can the generalized second law be generalized? Found. Phys. 32, 1877 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Davis, T.M., Davies, P.C.W., Lineweaver, C.H.: Black hole versus cosmological horizon entropy. Class. Quantum Grav. 20, 2753 (2003)zbMATHMathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: On the Hawking radiation as tunneling for a class of dynamical black holes. Class. Quantum Grav. 27, 015006 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    d’Inverno, R.: Introducing Einstein’s Relativity. Oxford University Press, Oxford (2002)Google Scholar
  32. 32.
    Doran, C.: A new form of the Kerr solution. Phys. Rev. D 61, 06750 (2000)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Easther, R., Lowe, D.A.: Holography, cosmology, and the second law of thermodynamics. Phys. Rev. Lett. 82, 4967 (1999)zbMATHMathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Eling, C., Guedens, R., Jacobson, T.: Nonequilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96, 121301 (2006)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Faraoni, V.: Apparent and trapping cosmological horizons. Phys. Rev. D 84, 024003 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Faraoni, V., Nielsen, A.B.: Quasi-local horizons, horizon-entropy, and conformal field redefinitions. Class. Quantum Grav. 28, 175008 (2011)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Fischler, W., Susskind, L.: Holography and cosmology. Preprint arXiv:hep-th/9806039Google Scholar
  38. 38.
    Fischler, W., Loewy, A., Paban, S.: The entropy of the microwave background and the acceleration of the universe. J. High Energy Phys. 09, 024 (2003)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Frolov, A., Kofman, L.: Inflation and de Sitter thermodynamics. J. Cosmol. Astropart. Phys. 0305, 009 (2003)MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Ghersi, J.T.G., Geshnizjani, G., Piazza, F., Shandera, S.: Eternal inflation and a thermodynamic treatment of Einstein’s equations. J. Cosmol. Astropart. Phys. 1106, 005 (2011)CrossRefGoogle Scholar
  41. 41.
    Gibbons, G.W., Hawking, S.W.: Cosmological event horizon, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    Guth, A.H.: The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    Hawking, S.W.: Information preservation and weather forecasting for black holes. Preprint arXiv:1401.5761Google Scholar
  44. 44.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar
  45. 45.
    Hayward, S.A.: Gravitational energy in spherical symmetry. Phys. Rev. D 53, 1938 (1996)MathSciNetADSCrossRefGoogle Scholar
  46. 46.
    Hayward, S.A.: Unified first law of black-hole dynamics and relativistic thermodynamics. Class. Quantum Grav. 15, 3147 (1998)zbMATHMathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Hayward, S.A., Mukohyama, S., Ashworth, M.C.: Dynamic black holes and entropy. Phys. Lett. A 256, 347 (1999)MathSciNetADSCrossRefGoogle Scholar
  48. 48.
    Ibison, M.: On the conformal forms of the Robertson-Walker metric. J. Math. Phys. 48, 122501 (2007)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Infeld, L., Schild, A.: A new approach to kinematic cosmology. Phys. Rev. 68, 250 (1945)MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)zbMATHMathSciNetADSCrossRefGoogle Scholar
  51. 51.
    Jang, K.-X., Feng, T., Peng, D.-T.: Hawking radiation of apparent horizon in a FRW universe as tunneling beyond semiclassical approximation. Int. J. Theor. Phys. 48, 2112 (2009)CrossRefGoogle Scholar
  52. 52.
    Kaloper, N., Linde, A.D.: Cosmology versus holography. Phys. Rev. D 60, 103509 (1999)MathSciNetADSCrossRefGoogle Scholar
  53. 53.
    Kaloper, N., Kleban, M., Sorbo, L.: Observational implications of cosmological event horizons. Phys. Lett. B 600, 7 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Reading (1990)zbMATHGoogle Scholar
  55. 55.
    Kraus, P., Wilczek, F.: Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9, 3713 (1995)MathSciNetADSCrossRefGoogle Scholar
  56. 56.
    Li, R., Ren, J.-R., Shi, D.-F.: Fermions tunneling from apparent horizon of FRW universe. Phys. Lett. B 670, 446 (2009)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large Scale Structure. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  58. 58.
    Lowe, D.A., Marolf, D.: Holography and eternal inflation. Phys. Rev. D 70, 026001 (2004)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Mazumder, N., Biswas, R., Chakraborty, S.: Interacting three fluid system and thermodynamics of the universe bounded by the event horizon. Gen. Rel. Gravit. 43, 1337 (2011)zbMATHMathSciNetADSCrossRefGoogle Scholar
  61. 61.
    McVittie, G.C.: The mass-particle in an expanding universe. Mon. Not. R. Astr. Soc. 93, 325 (1933)ADSCrossRefGoogle Scholar
  62. 62.
    Medved, A.J.M.: Radiation via tunneling from a de Sitter cosmological horizon. Phys. Rev. D 66, 124009 (2002)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Medved, A.J.M.: A brief editorial on de Sitter radiation via tunneling. Preprint arXiv:0802.3796Google Scholar
  64. 64.
    Mosheni Sadjadi, H.: Generalized second law in a phantom-dominated universe. Phys. Rev. D 73, 0635325 (2006)Google Scholar
  65. 65.
    Mottola, E.: Thermodynamic instability of de Sitter space. Phys. Rev. D 33, 1616 (1986)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)zbMATHCrossRefGoogle Scholar
  67. 67.
    Nielsen, A.B., Yeom, D.-H.: Black holes without boundaries. Int. J. Mod. Phys. A 24, 5261 (2009)zbMATHMathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Nielsen, A.B., Visser, M.: Production and decay of evolving horizons. Class. Quantum Grav. 23, 4637 (2006)zbMATHMathSciNetADSCrossRefGoogle Scholar
  69. 69.
    Nolan, B.C.: Sources for McVittie’s mass particle in an expanding universe. Phys. Rev. D 58, 064006 (1998)MathSciNetADSCrossRefGoogle Scholar
  70. 70.
    Nolan, B.C.: A Point mass in an isotropic universe. 2. Global properties. Class. Quantum Grav. 16, 1227 (1999)Google Scholar
  71. 71.
    Nolan, B.C.: A Point mass in an isotropic universe 3. The region R ≤ 2m. Class. Quantum Grav. 16, 3183 (1999)Google Scholar
  72. 72.
    Parikh, M.K.: New coordinates for de Sitter space and de Sitter radiation. Phys. Lett. B 546, 189 (2002)zbMATHMathSciNetADSCrossRefGoogle Scholar
  73. 73.
    Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    Piao, Y.-S.: Entropy of the microwave background radiation in the observable universe. Phys. Rev. D 74, 47301 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    Rindler, W.: Visual horizons in world-models. Mon. Not. R. Astr. Soc. 116, 663 (1956) (reprinted in Gen. Rel. Gravit. 34, 133 (2002))Google Scholar
  76. 76.
    Sekiwa, Y.: Decay of the cosmological constant by Hawking radiation as quantum tunneling. Preprint arXiv:0802.3266Google Scholar
  77. 77.
    Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Rel. Grav. 30, 701 (1998)zbMATHMathSciNetADSCrossRefGoogle Scholar
  78. 78.
    Spradlin, M.A., Strominger, A., Volovich, A.: Les Houches lectures on de Sitter space. In Les Houches 2001, Gravity, Gauge Theories and Strings, Proceedings of the Les Houches Summer School 76, Les Houches, pp. 423–453 (2001). (Preprint arXiv:hep-th/011007)Google Scholar
  79. 79.
    Spradlin, M.A., Volovich, A.: Vacuum states and the S matrix in dS/CFT. Phys. Rev. D 65, 104037 (2002)MathSciNetADSCrossRefGoogle Scholar
  80. 80.
    Stephani, H.: General Relativity. Cambridge University Press, Cambridge (1982)zbMATHGoogle Scholar
  81. 81.
    Veneziano, G.: Pre-bangian origin of our entropy and time arrow. Phys. Lett. B 454, 22 (1999)ADSCrossRefGoogle Scholar
  82. 82.
    Verlinde, E.: On the holographic principle in a radiation-dominated universe. Preprint arXiv:hep-th/0008140Google Scholar
  83. 83.
    Visser, M.: Essential and inessential features of Hawking radiation. Int. J. Mod. Phys. D 12, 649 (2003)zbMATHMathSciNetADSCrossRefGoogle Scholar
  84. 84.
    Wang, B., Abdalla, E.: Plausible upper limit on the number of e-foldings. Phys. Rev. D 69, 104014 (2004)MathSciNetADSCrossRefGoogle Scholar
  85. 85.
    Wang, B., Gong, Y., Abdalla, E.: Thermodynamics of an accelerated expanding universe. Phys. Rev. D 74, 083520 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    Zhu, T., Ren, J.-R.: Corrections to Hawking-like radiation for a Friedmann-Robertson-Walker universe. Eur. Phys. J. C 62, 413 (2009)zbMATHMathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Valerio Faraoni
    • 1
  1. 1.Physics DepartmentBishop’s UniversitySherbrookeCanada

Personalised recommendations