Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 907))

Abstract

This chapter introduces the physics of horizons and reviews the basic stationary black holes of General Relativity (Schwarzschild, Reissner-Nordström, Kerr, and Kerr-Newman) in various coordinate systems. The various energy conditions of relativistic gravity are also discussed.

The noblest pleasure is the joy of understanding.

—Leonardo da Vinci

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One should be careful, however, in taking limits of the spacetime geometry based on coordinate systems: the M → 0 limit of Schwarzschild space, really, produces either Minkowski space or a Kasner metric [27] and, strictly speaking, a coordinate-free approach [5557] is needed to make limits rigorous.

  2. 2.

    A more general family of coordinates parametrized by the parameter \(p \equiv 1 - v_{(\infty )}^{2}\) with 0 < v () < 1 are introduced in [45] and discussed in [47]; it includes as special cases the Painlevé-Gullstrand coordinates for p → 1, Eddington-Finkelstein coordinates in the lightlike limit p → 0, and it is related to another family of coordinate systems characterized by p > 1 and discussed in Refs. [25, 26].

  3. 3.

    In the terminology to be introduced later, the outer horizon \(R = R_{+}\) is an event and an apparent horizon, while the inner horizon \(R = R_{-}\) is an apparent, but not an event, horizon, and is also a Cauchy horizon which is unstable [9, 59].

References

  1. Amendola, L., Tsujikawa, S.: Dark Energy, Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  2. Arnowitt, R.L., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research, pp. 227–265. Wiley, New York (1962). [Reprinted in arXiv:gr-qc/0405109]

    Google Scholar 

  3. Ashtekar, A., Galloway, G.J.: Some uniqueness results for dynamical horizons. Adv. Theor. Math. Phys. 9, 1 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev. Relat. 7, 10 (2004)

    ADS  Google Scholar 

  5. Babichev, E., Charmousis, C.: Dressing a black hole with a time-dependent Galileon. J. High Energy Phys. 1408, 106 (2014)

    Article  ADS  Google Scholar 

  6. Baumgarte, T.W., Shapiro, S.L.: Numerical relativity and compact binaries. Phys. Rept. 376, 41 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Booth, I.: Black hole boundaries. Can. J. Phys. 83, 1073 (2005)

    Article  ADS  Google Scholar 

  8. Buchdahl, H.A.: Isotropic coordinates and Schwarzschild metric. Int. J. Theor. Phys. 24, 731 (1985)

    Article  MathSciNet  Google Scholar 

  9. Burko, L.M., Ori, A. (eds.): Internal Structure of Black Holes and Spacetime Singularities, An International Research Workshop, Haifa (IOP, Bristol, 1997)

    MATH  Google Scholar 

  10. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity, A Survey of Gravitational Theories for Cosmology and Astrophysics (Springer, New York, 2010)

    Google Scholar 

  11. Carroll, S.M.: Spacetime and Geometry—An Introduction to General Relativity (Addison-Wesley, San Francisco, 2004)

    MATH  Google Scholar 

  12. Carter, B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331 (1970)

    Article  ADS  Google Scholar 

  13. Chu, T., Pfeiffer, H.P., Cohen, M.I.: Horizon dynamics of distorted rotating black holes. Phys. Rev. D 83, 104018 (2011)

    Article  ADS  Google Scholar 

  14. Collins, W.: Mechanics of apparent horizons. Phys. Rev. D 45, 495 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. Davis, A.-C., Gregory, R., Jha, R., Muir, J.: Astrophysical black holes in screened modified gravity. J. Cosmol. Astropart. Phys. 1408, 033 (2014)

    Article  ADS  Google Scholar 

  16. Detweiler, S.: Resource letter BH-1: black holes. Am. J. Phys. 49, 394 (1981)

    ADS  Google Scholar 

  17. De Felice, A., Tsujikawa, S.: f(R) theories. Living Rev. Relat. 13, 3 (2010)

    Google Scholar 

  18. Eddington, A.S.: A comparison of Whitehead’s and Einstein’s formulas. Nature 113, 192 (1924)

    Article  ADS  Google Scholar 

  19. Eling, C., Guedens, R., Jacobson, T.: Nonequilibrium thermodynamics of spacetime. Phys. Rev. Lett. 96, 121301 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  20. Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Kluwer Academic, Dordrecht (2004)

    Book  MATH  Google Scholar 

  21. Finkelstein, D.: Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. D 110, 965 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Ford, L.H., Roman, T.A.: Classical scalar fields and violations of the second law. Phys. Rev. D 64, 024023 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  23. Frolov, V.P., Novikov, I.D.: Black Hole Physics, Basic Concepts and New Developments. Kluwer Academic, Dordrecht (1998)

    Book  MATH  Google Scholar 

  24. Gallo, E., Marolf, D.: Resource letter BH-2: black holes. Am. J. Phys. 77, 294 (2009)

    Article  ADS  Google Scholar 

  25. Gautreau, R.: Light cones inside the Schwarzschild radius. Am. J. Phys. 63, 431 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Gautreau, R., Hoffmann, B.: The Schwarzschild radial coordinate as a measure of proper distance. Phys. Rev. D 17, 2552 (1978)

    Article  ADS  Google Scholar 

  27. Geroch, R.: Limits of spacetimes. Commun. Math. Phys. 13, 180 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  28. Gibbons, G.W., Hawking, S.W.: Cosmological event horizon, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  29. Gullstrand, A.: Allgemeine lösung de statischen eink örper-problems in der Einsteinschen gravitations theories. Ark. Mat. Astron. Fys. 16, 1 (1922)

    Google Scholar 

  30. Gundlach, C., Price, R.H., Pullin, J.: Late-time behavior of stellar collapse and explosions. I. Linearized perturbations. Phys. Rev. D 49, 883 (1994)

    Google Scholar 

  31. Gürses, M., Gürsey, F.: Lorentz covariant treatment of the Kerr-Schild geometry. J. Math. Phys. 16, 2385 (1975)

    Article  ADS  Google Scholar 

  32. Hawking, S.W.: Black hole explosions? Nature 248, 30 (1970)

    Article  ADS  Google Scholar 

  33. Hawking, S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  34. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975); Erratum 46, 206 (1976)

    Google Scholar 

  35. Hayward, S.A.: General laws of black hole dynamics. Phys. Rev. D 49, 6467 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  36. Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014)

    Article  ADS  Google Scholar 

  37. Israel, W.: Event horizons in static vacuum space-times. Phys. Rev. 164, 1776 (1967)

    Article  ADS  Google Scholar 

  38. Jacobson, T.: Thermodynamics of spacetime: the Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Kerr, R.P., Schild, A.: A new class of vacuum solutions of the Einstein field equations. In: Atti del Convegno sulla relativitá generale: problemi dell’energia e onde gravitazionali, p. 222. Barbera, Firenze (1965)

    Google Scholar 

  41. Kerr, R.P., Schild, A.: Some algebraically degenerate solutions of Einstein’s gravitational field equations. Proc. Symp. Appl. Math. 17, 199 (1965)

    Article  MathSciNet  Google Scholar 

  42. Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, Reading (1990)

    MATH  Google Scholar 

  43. Kraus, P., Wilczek, F.: Some applications of a simple stationary line element for the Schwarzschild geometry. Mod. Phys. Lett. A 9, 3713 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  44. Kruskal, M.D.: Maximal extension of Schwarzschild metric. Phys. Rev. 119, 1743 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Lake, K.: A class of quasi-stationary regular line elements for the Schwarzschild geometry. Preprint, arXiv:gr-qc/9407005

    Google Scholar 

  46. Liddle, A.R., Lyth, D.H.: Cosmological Inflation and Large Scale Structure. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  47. Martel, K., Poisson, E.: Regular coordinate systems for Schwarzschild and other spherical spacetimes. Am. J. Phys. 69, 476 (2001)

    Article  ADS  Google Scholar 

  48. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973)

    Google Scholar 

  49. Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  50. Muller zum Hagen, H., Robinson, D.C., Seifert, H.J.: Black holes in static vacuum space-times. Gen. Rel. Gravit. 4, 53 (1973)

    Google Scholar 

  51. Nielsen, A.B.: Black holes and black hole thermodynamics without event horizons. Gen. Rel. Gravit. 41, 1539 (2009)

    Article  MATH  ADS  Google Scholar 

  52. Nielsen, A.B., Visser, M.: Production and decay of evolving horizons. Class. Quantum Grav. 23, 4637 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  53. Novikov, I.D.: PhD thesis, Shternberg Astronomical Institute, Moscow (1963)

    Google Scholar 

  54. Painlevé, P.: La méchanique classique et la théorie de la relativité. Comp. Rend. Acad. Sci. (Paris) 173, 677 (1921)

    Google Scholar 

  55. Paiva, F.M., Romero, C.: On the limits of Brans-Dicke space-times: a coordinate-free approach. Gen. Rel. Gravit. 25, 1305 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  56. Paiva, F.M., Reboucas, M., MacCallum, M.: On limits of space-times: a coordinate-free approach. Class. Quantum Grav. 10, 1165 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Paiva, F.M., Reboucas, M., Hall, G.S., MacCallum, M.: Limits of the energy-momentum tensor in general relativity. Class. Quantum Grav. 15, 1031 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. Poisson, E.: A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  59. Poisson, E., Israel, W.: The internal structure of black holes. Phys. Rev. D 41, 1796 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  60. Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse. I. Scalar and gravitational perturbations. Phys. Rev. D 5, 2419 (1972)

    Google Scholar 

  61. Price, R.H.: Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields. Phys. Rev. D 5, 2439 (1972)

    Google Scholar 

  62. Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Rinaldi, M.: Black holes with nonminimal derivative coupling. Phys. Rev. D 86, 084048 (2012)

    Article  ADS  Google Scholar 

  64. Rindler, W.: Visual horizons in world-models. Mon. Not. R. Astr. Soc. 116, 663 (1956). [Reprinted in Gen. Rel. Gravit. 34, 133 (2002)]

    Google Scholar 

  65. Robertson, H.P., Noonan, T.W.: Relativity and Cosmology. Saunders, Philadelphia (1968)

    MATH  Google Scholar 

  66. Robinson, D.C.: Classification of black holes with electromagnetic fields. Phys. Rev. D 10, 458 (1974)

    Article  ADS  Google Scholar 

  67. Robinson, D.C.: Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905 (1975)

    Article  ADS  Google Scholar 

  68. Sotiriou, T.P., Faraoni, V.: f(R) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Google Scholar 

  69. Sotiriou, T.P., Zhou, S.-Y.: Black hole hair in generalized scalar-tensor gravity. Phys. Rev. Lett. 112, 251102 (2014)

    Article  ADS  Google Scholar 

  70. Sotiriou, T.P., Zhou, S.-Y.: Black hole hair in generalized scalar-tensor gravity: an explicit example. Phys. Rev. D 90, 124063 (2014)

    Article  ADS  Google Scholar 

  71. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  72. Szekeres, G.: On the singularities of a Riemannian manifold. Publ. Mat. Debr. 7, 285 (1960)

    MATH  MathSciNet  Google Scholar 

  73. Thornburg, J.: Event and apparent horizon finders for 3 + 1 numerical relativity. Living Rev. Relat. 10, 3 (2007)

    ADS  Google Scholar 

  74. Wald, R.M.: General Relativity. Chicago University Press, Chicago (1984)

    Book  MATH  Google Scholar 

  75. Wald, R.M.: The thermodynamics of black holes. Living Rev. Relat. 4, 6 (2001)

    ADS  Google Scholar 

  76. Weyl, H.: Zur Gravitationstheorie. Ann. Phys. (Leipzig) 54, 117 (1917)

    Google Scholar 

  77. Wheeler, J.A.: Geons. Phys. Rev. 97, 511 (1955)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Faraoni, V. (2015). Stationary Black Holes in General Relativity. In: Cosmological and Black Hole Apparent Horizons. Lecture Notes in Physics, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-319-19240-6_1

Download citation

Publish with us

Policies and ethics