Skip to main content

Generation, Characterization and Use of Atom-Resonant Indistinguishable Photon Pairs

  • Chapter
  • First Online:
Engineering the Atom-Photon Interaction

Part of the book series: Nano-Optics and Nanophotonics ((NON))

  • 1842 Accesses

Abstract

We describe the generation of atom-resonant indistinguishable photon pairs using nonlinear optical techniques, their spectral purification using atomic filters, characterization using multi-photon interference, and application to quantum-enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spontaneous parametric down-conversion, we generate pairs of photons in the resonant modes of optical cavities with linewidths comparable to the natural linewidths of strong atomic transitions. The cavities and pump lasers are tuned so that emission occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the \(\text {D}_1\) line, at 794.7 nm. The emission from these frequency-degenerate modes is separated from other cavity emission using ultra-narrow atomic frequency filters, either a Faraday anomalous dispersion optical filter (FADOF) with a 445 MHz linewidth and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz linewidth and \(\ge \) 35 dB out-of-band rejection. Using the type-I source, we demonstrate interference of photon pair amplitudes against a coherent state and a new method for full characterization of the temporal wave-function of narrow-band photon pairs. With the type-II source we demonstrate high-visibility super-resolving interference, a high-fidelity atom-tuned NooN state, and quantum enhanced sensing of atoms using indistinguishable photon pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.H. Shih, C.O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988). doi:10.1103/PhysRevLett.61.2921

    Article  ADS  Google Scholar 

  2. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987). doi:10.1103/PhysRevLett.59.2044

    Article  ADS  Google Scholar 

  3. D. Bouwmeester et al., Experimental quantum teleportation. Nature 390, 575–579 (1997). doi:10.1038/37539

    Article  ADS  Google Scholar 

  4. J.-W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2003). doi:10.1038/nature02054

    Article  ADS  Google Scholar 

  6. M.W. Mitchell, J.S. Lundeen, A.M. Steinberg, Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004). doi:10.1038/nature02493

  7. S. Aaronson, A. Arkhipov. The Computational Complexity of Linear Optics (2010)

    Google Scholar 

  8. L.-A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986). doi:10.1103/PhysRevLett.57.2520

    Article  ADS  Google Scholar 

  9. The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962–965 (2011). doi:10.1038/nphys2083

  10. J. Aasi et al., Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013). doi:10.1038/nphoton.2013.177

  11. S. Braunstein, A. Pati, Quantum Information with Continuous Variables (Springer, New York, 2010)

    Google Scholar 

  12. F. Wolfgramm et al., Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010). doi:10.1103/PhysRevLett.105.053601

    Article  ADS  Google Scholar 

  13. M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010). doi:10.1103/PhysRevLett.104.093602

    Article  ADS  Google Scholar 

  14. M. Koschorreck, M. Napolitano, B. Dubost, M.W. Mitchell, Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010). doi:10.1103/PhysRevLett.105.093602

    Article  ADS  Google Scholar 

  15. R.J. Sewell et al., Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012). doi:10.1103/PhysRevLett.109.253605

    Article  ADS  Google Scholar 

  16. R.J. Sewell et al., Ultrasensitive atomic spin measurements with a nonlinear interferometer. Phys. Rev. X 4, 021045 (2014). doi:10.1103/PhysRevX.4.021045

    Google Scholar 

  17. A. Predojević, Z. Zhai, J.M. Caballero, M.W. Mitchell, Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator. Phys. Rev. A 78, 063820 (2008). doi:10.1103/PhysRevA.78.063820

    Article  ADS  Google Scholar 

  18. F. Wolfgramm et al., Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008). doi:10.1364/OE.16.018145

    Article  ADS  Google Scholar 

  19. F. Wolfgramm, A. Cerè, M.W. Mitchell, Noon states from cavity-enhanced down-conversion: high quality and super-resolution. J. Opt. Soc. Am. B 27, A25–A29 (2010). doi:10.1364/JOSAB.27.000A25

    Article  ADS  Google Scholar 

  20. J.A. Zielińska, F.A. Beduini, V.G. Lucivero, M.W. Mitchell, Atomic filtering for hybrid continuous-variable/discrete-variable quantum optics. Opt. Express 22, 25307–25317 (2014). doi:10.1364/OE.22.025307

    Article  ADS  Google Scholar 

  21. J.A. Zielińska, F.A. Beduini, N. Godbout, M.W. Mitchell, Ultranarrow Faraday rotation filter at the Rb D\(_1\) line. Opt. Lett. 37, 524–526 (2012). doi:10.1364/OL.37.000524

    Article  ADS  Google Scholar 

  22. F.A. Beduini, J.A. Zielińska, V.G. Lucivero, Y.A. de Icaza Astiz, M.W. Mitchell, Interferometric measurement of the biphoton wave function. Phys. Rev. Lett. 113, 183602 (2014). doi:10.1103/PhysRevLett.113.183602

    Article  ADS  Google Scholar 

  23. F. Wolfgramm, C. Vitelli, F.A. Beduini, N. Godbout, M.W. Mitchell, Entanglement-enhanced probing of a delicate material system. Nat. Photon. 7, 28–32 (2013). doi:10.1038/nphoton.2012.300

    Article  ADS  Google Scholar 

  24. Z.Y. Ou, Y.J. Lu, Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 8, 2556–2559 (1999). doi:10.1103/PhysRevLett.83.2556

    Article  ADS  Google Scholar 

  25. Y. Öhman, On some new auxiliary instruments in astrophysical research VI. A tentative monochromator for solar work based on the principle of selective magnetic rotation. Stockholms Obs. Ann. 19, 9–11 (1956)

    Google Scholar 

  26. J.S. Neergaard-Nielsen, B.M. Nielsen, H. Takahashi, A.I. Vistnes, E.S. Polzik, High purity bright single photon source. Opt. Express 15, 7940–7949 (2007). doi:10.1364/OE.15.007940

    Article  ADS  Google Scholar 

  27. A. Haase, N. Piro, J. Eschner, M.W. Mitchell, Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction. Opt. Lett. 34, 55–57 (2009). doi:10.1364/OL.34.000055

  28. P. Palittapongarnpim, A. MacRae, A.I. Lvovsky, Note: a monolithic filter cavity for experiments in quantum optics. Rev.Sci. Instrum. 83, 066101 (2012). doi:10.1063/1.4726458

    Article  ADS  Google Scholar 

  29. J.A. Zielińska, M.W. Mitchell, Theory of high gain cavity-enhanced spontaneous parametric down-conversion (2014)

    Google Scholar 

  30. X. Yang, S. Li, C. Zhang, H. Wang, Enhanced cross-kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system. J. Opt. Soc. Am. B 26, 1423–1424 (2009). doi:10.1364/JOSAB.26.001423

    Article  ADS  Google Scholar 

  31. R.M. Camacho, P.K. Vudyasetu, J.C. Howell, Four-wave-mixing stopped light in hot atomic rubidium vapour. Nat. Photon. 3, 103–106 (2009). doi:10.1038/nphoton.2008.290

    Article  ADS  Google Scholar 

  32. V.I. Yudin et al., Vector magnetometry based on electromagnetically induced transparency in linearly polarized light. Phys. Rev. A 82, 033807 (2010). doi:10.1103/PhysRevA.82.033807

    Article  ADS  Google Scholar 

  33. W.F. Krupke, R.J. Beach, V.K. Kanz, S.A. Payne, Resonance transition 795-nm rubidium laser. Opt. Lett. 28, 2336–2338 (2003). doi:10.1364/OL.28.002336

    Article  ADS  Google Scholar 

  34. J. Ries, B. Brezger, A.I. Lvovsky, Experimental vacuum squeezing in rubidium vapor via self-rotation. Phys. Rev. A 68, 025801 (2003). doi:10.1103/PhysRevA.68.025801

    Article  ADS  Google Scholar 

  35. I.H. Agha, G. Messin, P. Grangier, Generation of pulsed and continuous-wave squeezed light with \(^{87}\)Rb vapor. Opt. Express 18, 4198–4205 (2010). doi:10.1364/OE.18.004198

    Article  ADS  Google Scholar 

  36. M. Hosseini, G. Campbell, B.M. Sparkes, P.K. Lam, B.C. Buchler, Unconditional room-temperature quantum memory. Nat. Phys. 7, 794–798 (2011). doi:10.1038/nphys2021

    Article  Google Scholar 

  37. A. Cere et al., Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor. Opt. Lett. 34, 1012–1014 (2009). doi:10.1364/OL.34.001012

    Article  ADS  MATH  Google Scholar 

  38. F. Wolfgramm, Y.A. de Icaza Astiz, F.A. Beduini, A. Cerè, M.W. Mitchell, Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011). doi:10.1103/PhysRevLett.106.053602

    Article  ADS  Google Scholar 

  39. I. Gerhardt, Software—sodium data. Available at http://gerhardt.ch/sodium.php

  40. W. Kiefer, R. Low, J. Wrachtrup, I. Gerhardt, Na-Faraday rotation filtering: the optimal point. Sci. Rep. 4, 6552 (2014). doi:10.1038/srep06552

    Article  ADS  Google Scholar 

  41. M.A. Zentile et al., Elecsus: A program to calculate the electric susceptibility of an atomic ensemble. Comput. Phys. Commun. 189, 162–174 (2015). doi:10.1016/j.cpc.2014.11.023

    Article  ADS  Google Scholar 

  42. J. Menders, K. Benson, S.H. Bloom, C.S. Liu, E. Korevaar, Ultranarrow line filtering using a cs faraday filter at 852 nm. Opt. Lett. 16, 846–848 (1991). doi:10.1364/OL.16.000846

    Article  ADS  Google Scholar 

  43. B. Yin, T. Shay, Faraday anomalous dispersion optical filter for the Cs 455 nm transition. Photon. Technol. Lett. IEEE 4, 488–490 (1992). doi:10.1109/68.136496

    Article  ADS  Google Scholar 

  44. Y. Wang, Cs faraday optical filter with a single transmission peak resonant with the atomic transition at 455 nm. Opt. Express 20, 25817–25825 (2012). doi:10.1364/OE.20.025817

    Article  ADS  Google Scholar 

  45. B. Yin, L.S. Alvarez, T.M. Shay, The rb 780-nanometer faraday anomalous dispersion optical filter: Theory and experiment (Technical report, Jet Propulsion Laboratory, 1994)

    Google Scholar 

  46. D.J. Dick, T.M. Shay, Ultrahigh-noise rejection optical filter. Opt. Lett. 16, 867–869 (1991). doi:10.1364/OL.16.000867

    Article  ADS  Google Scholar 

  47. L. Ling, G. Bi, Isotope \(^{87}\)Rb Faraday anomalous dispersion optical filter at 420 nm. Opt. Lett. 39, 3324–3327 (2014). doi:10.1364/OL.39.003324

    Article  ADS  Google Scholar 

  48. B. Yin, T. Shay, A potassium Faraday anomalous dispersion optical filter. Opt. Commun. 94, 30–32 (1992). doi:10.1016/0030-4018(92)90400-L

    Article  ADS  Google Scholar 

  49. H. Chen, C.Y. She, P. Searcy, E. Korevaar, Sodium-vapor dispersive faraday filter. Opt. Lett. 18, 1019–1021 (1993). doi:10.1364/OL.18.001019

    Article  ADS  Google Scholar 

  50. Y.C. Chan, J.A. Gelbwachs, Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm. IEEE J. Quantum Electron. 29, 2379–2384 (1993). doi:10.1109/3.245569

    Article  ADS  Google Scholar 

  51. C.E. Kuklewicz, F.N.C. Wong, J.H. Shapiro, Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006). doi:10.1103/PhysRevLett.97.223601

    Article  ADS  Google Scholar 

  52. O. Kuzucu, F.N.C. Wong, Pulsed sagnac source of narrow-band polarization-entangled photons. Phys. Rev. A 77, 032314 (2008). doi:10.1103/PhysRevA.77.032314

    Article  ADS  Google Scholar 

  53. K.A. O’Donnell, A.B. U’Ren, Time-resolved up-conversion of entangled photon pairs. Phys. Rev. Lett. 103, 123602 (2009). doi:10.1103/PhysRevLett.103.123602

    Article  ADS  Google Scholar 

  54. L. Pezzè, A. Smerzi, Quantum theory of phase estimation, in Proceedings of the International School of Physics “Enrico Fermi”, ed. by G.M. Tino, M.A. Kasevich (IOS Press, Amsterdam, 2014), pp. 691–741

    Google Scholar 

  55. U. Dorner et al., Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009). doi:10.1103/PhysRevLett.102.040403

    Article  ADS  Google Scholar 

  56. B.M. Escher, R.L. de Matos Filho, L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nat. Phys. 7, 406–411 (2011). doi:10.1038/nphys1958

    Article  Google Scholar 

  57. G.D. Boyd, D.A. Kleinman, Parametric interaction of focused gaussian light beams. J. Appl. Phys. 39, 3597–3639 (1968). doi:10.1063/1.1656831

    Article  ADS  Google Scholar 

  58. R.L. Targat, J.-J. Zondy, P. Lemonde, 75%-efficiency blue generation from an intracavity PPKTP frequency doubler. Opt. Commun. 247, 471–481 (2005). doi:10.1016/j.optcom.2004.11.081

    Article  ADS  Google Scholar 

  59. B. Boulanger, M.M. Fejer, R. Blachman, P.F. Bordui, Study of KTiOPO\(_4\) graytracking at 1064, 532, and 355 nm. Appl. Phys. Lett. 65, 2401–2403 (1994). doi:10.1063/1.112688

    Article  ADS  Google Scholar 

  60. R.B.A. Adamson, L.K. Shalm, M.W. Mitchell, A.M. Steinberg, Multiparticle state tomography: Hidden differences. Phys. Rev. Lett. 98, 043601 (2007). doi:10.1103/PhysRevLett.98.04360

    Article  ADS  Google Scholar 

  61. B. Julsgaard, J. Sherson, J.I. Cirac, J. Fiurasek, E.S. Polzik, Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004). doi:10.1038/nature03064

    Article  ADS  Google Scholar 

  62. R.J. Sewell, M. Napolitano, N. Behbood, G. Colangelo, M.W. Mitchell, Certified quantum non-demolition measurement of a macroscopic material system. Nat. Photon. 7, 517–520 (2013). doi:10.1038/nphoton.2013.100

    Article  ADS  Google Scholar 

  63. L.B. Madsen, K. Mølmer, Spin squeezing and precision probing with light and samples of atoms in the gaussian description. Phys. Rev. A 70, 052324 (2004). doi:10.1103/PhysRevA.70.052324

    Article  ADS  Google Scholar 

  64. M. Napolitano et al., Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011). doi:10.1038/nature09778

    Article  ADS  Google Scholar 

  65. D.A. Steck, Rubidium 85 D line data, revision 2.1.4 (2010), http://steck.us/alkalidata. Accessed 23 Dec 2010

  66. D.A. Steck, Rubidium 87 D line data, revision 2.1.4 (2010), http://steck.us/alkalidata. Accessed 23 Dec 2010

  67. I. Afek, O. Ambar, Y. Silberberg, Classical bound for mach-zehnder superresolution. Phys. Rev. Lett. 104, 123602 (2010). doi:10.1103/PhysRevLett.104.123602

    Article  ADS  Google Scholar 

  68. N. Thomas-Peter et al., Real-world quantum sensors: evaluating resources for precision measurement. Phys. Rev. Lett. 107, 113603 (2011). doi:10.1103/PhysRevLett.107.113603

    Article  ADS  Google Scholar 

  69. Y.J. Lu, Z.Y. Ou, Optical parametric oscillator far below threshold: experiment versus theory. Phys. Rev. A 62, 033804 (2000). doi:10.1103/PhysRevA.62.033804

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work reported here involved many people over many years. I would especially like to thank Marta Abad, Federica Beduini, Alessandro Cerè, Nicolas Godbout, Valentina Parigi, Ana Predojević, Chiara Vitelli, Florian Wolfgramm, Xinxing Xing, and Joanna Zielińska, each of whom contributed something unique and essential to the work reported here, e.g. inventing a first-of-its-kind source or filter, providing insights into the physics of atomic optical instruments, or persuading difficult lasers (and their suppliers) to cooperate with our plans. Aephraim Steinberg was essential to getting the photon pair research started. The contributions of Zehui Zhai, Yannick de Icaza Astiz and Gianvito Lucivero are also much appreciated. The research was supported by various Catalan, Spanish, European, Canadian and philanthropic grants over the years. The writing of this chapter was supported by the Spanish MINECO project MAGO (Refer FIS2011-23520), by the European Research Council project AQUMET, and by Fundació Privada CELLEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan W. Mitchell .

Editor information

Editors and Affiliations

Appendix: Second-Order Correlation Functions of Filtered Output

Appendix: Second-Order Correlation Functions of Filtered Output

In this section we consider the second order correlation function of the field operators \(a_\mathrm{out}\) in a form:

$$\begin{aligned} G^{(2)}(T) \propto \langle a_\mathrm{out}^\dagger (t) a_\mathrm{out}^\dagger (t+T) a_\mathrm{out}(t+T) a_\mathrm{out}(t) \rangle \end{aligned}$$
(7.11)

for multimode (unfiltered) and single-mode (filtered) output of the OPO.

As shown by Lu et al. [69], \(G^{(2)}(T)\) describing the output of a single-mode, far-below-threshold OPO has the form of double exponential decay

$$\begin{aligned} G_\mathrm{single}^{(2)}(T)\propto e^{-|T|(\gamma _1+\gamma _2)}, \end{aligned}$$
(7.12)

where the reflectivity of the output coupler is \(r_1=\exp [{-\gamma _1 \tau }]\), the effective reflectivity resulting from intracavity losses is \(r_2=\exp [{-\gamma _2 \tau }]\) and \(\tau \) is the cavity round-trip time. An ideal narrowband filter would remove all the nondegenerate cavity-enhanced spontaneous down-conversion CESPDC modes, reducing the \(G^{(2)}(T)\) to \(G_\mathrm{single}^{(2)}(T)\). This filtering effect was demonstrated in [38] for a type-II OPO and an induced dichroism atomic filter.

In [69] it is also predicted that when the filter is off, so that the output consists of N cavity modes, \(G_{}^{(2)}(T)\) takes the form

$$\begin{aligned} G_\mathrm{multi}^{(2)}(T)\propto & {} G_\mathrm{single}^{(2)}(T) \frac{\sin ^2[(2N+1)\pi T/ \tau ]}{(2N+1)\sin ^2[\pi T/\tau ]} \end{aligned}$$
(7.13)
$$\begin{aligned}\approx & {} G_\mathrm{single}^{(2)}(T)\sum _{n=-\infty }^{\infty }\delta (T-n\tau ), \end{aligned}$$
(7.14)

i.e., with the same double exponential decay but modulated by a comb with a period equal to the cavity round-trip time \(\tau \). In our case the bandwidth of the output contains more than 200 cavity modes, and the fraction in (7.13) is well approximated by a comb of Dirac delta functions.

The comb period of \(\tau = 1.99\) ns is comparable to the \(t_\mathrm{bin} = 1\) ns resolution of our counting electronics, a digital time-of-flight counter (Fast ComTec P7888). This counter assigns arrival times to the signal and idler arrivals relative to an internal clock. We take the “window function” for the ith bin, i.e., the probability of an arrival at time T being assigned to that bin, to be

$$\begin{aligned} f^{(i)}(T)={\left\{ \begin{array}{ll} 1,&{} \text {if } T\in [i t_{bin}, (i+1) t_{bin}] \,, \\ 0, &{} \text {otherwise}\,. \end{array}\right. } \end{aligned}$$
(7.15)

Without loss of generality we assign the signal photon’s bin as \(i=0\), and we include an unknown relative delay \(T_0\) between signal and idler due to path length, electronics, cabling, and so forth. For a given signal arrival time \(t_s\), the rate of idler arrivals in the ith bin is \(\int dt_i \, f^{(i)}(t_i) G_\mathrm{multi}^{(2)}(t_i - t_s - T_0)\) (\(t_i\) is the idler arrival time). This expression must be averaged over the possible \(t_s\) within bin \(i=0\). We also include the “accidental” coincidence rate \(G_\mathrm{acc}^{(2)}= t_\mathrm{bin} R_1 R_2\), where \(R_1, R_2\) are the singles detection rates at detectors 1, 2, respectively. The rate at which coincidence events are registered with i bins of separation is then

$$\begin{aligned} G_\mathrm{multi,det}^{(2)}(i)= & {} \frac{1}{t_\mathrm{bin}} \int dt_s \, f^{(0)}(t_s) \int dt_i \, f^{(i)}(t_i) G_\mathrm{multi}^{(2)}(t_i - t_s - T_0) + G_\mathrm{acc}^{(2)} \end{aligned}$$
(7.16)
$$\begin{aligned}= & {} \sum _{n=-\infty }^{\infty } G_\mathrm{single}^{(2)}(n \tau ) \frac{1}{t_\mathrm{bin}} \int _0^{t_\mathrm{bin}} dt_s \, f^{(i)}(t_s + T_0 + n \tau ) + G_\mathrm{acc}^{(2)}. \end{aligned}$$
(7.17)

We take \(T_0\) is a free parameter in fitting to the data. Note that if we write \(T_0=k t_\mathrm{bin}+\delta \) then the simultaneous events fall into kth bin and \(\delta \in [-t_\mathrm{bin}/2,t_\mathrm{bin}/2]\) determines where the histogram has the maximum visibility due to the beating between the 1 ns sampling frequency of the detection system and the 1.99 ns comb period. APD time resolution is estimated to be 350 ps FWHM (manufacturer’s specification), i.e. significantly less than the TOF uncertainty, and is not included here.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitchell, M.W. (2015). Generation, Characterization and Use of Atom-Resonant Indistinguishable Photon Pairs. In: Predojević, A., Mitchell, M. (eds) Engineering the Atom-Photon Interaction. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-19231-4_7

Download citation

Publish with us

Policies and ethics