Skip to main content

Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons

  • Chapter
  • First Online:
Book cover Engineering the Atom-Photon Interaction

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

In this chapter we will discuss the technology and experimental techniques to realize quantum dot (QD) single photon sources combining high outcoupling efficiencies and highest degrees of photon indistinguishability. The system, which is based on low density InAs QDs embedded in a quasi planar single sided microcavity with natural photonic traps is an ideal testbed to study quantum light emission from single QDs. We will discuss the influence of the excitation conditions on the purity of the single photon emission, and in particular on the degree of indistinguishability of the emitted photons. While high purity triggered emission of single photons is observed under all tested excitation conditions, single photon interference effects can almost vanish in experiments relying on non-resonant pumping into the quantum dot wetting layer. However, we can observe nearly perfect indistinguishability of single photons in resonance fluorescence excitation conditions, which underlines the superiority of this excitation scheme to create photon wave packets close to the Fourier limit. As a first step towards the realization of solid state quantum networks based on quantum dot single photon sources we test the overlap of photons emitted from remote QDs yielding non-postselected interference visibilities on the order of (\(\approx \)40 %) for quasi resonant excitation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Michler et al., A quantum dot single-photon turnstile device. Science 290, 228 (2000)

    Article  Google Scholar 

  2. Z.L. Yuan et al., Electrically driven single-photon source. Science 295, 102–105 (2002)

    Article  ADS  Google Scholar 

  3. T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010)

    Google Scholar 

  4. P. Michler, Single Quantum Dots (Springer, Heidelberg, 2003)

    Google Scholar 

  5. P. Michler, Single Semiconductor Quantum Dots (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  6. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  Google Scholar 

  7. J.W. Pan et al., Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  8. P. Kok et al., Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  9. J.L. O’Brien, Optical quantum computing. Science 318, 1567–1570 (2007)

    Article  ADS  Google Scholar 

  10. H.J. Briegel, W. Dur, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  11. J. Hofmann et al., Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012)

    Article  ADS  Google Scholar 

  12. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  Google Scholar 

  13. J. Nilsson et al., Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311–315 (2013)

    Article  ADS  Google Scholar 

  14. W.B. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)

    ADS  Google Scholar 

  15. O. Gazzano et al., Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013)

    Article  ADS  Google Scholar 

  16. J. Claudon et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010)

    ADS  Google Scholar 

  17. M.E. Reimer et al., Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 737 (2012)

    Article  ADS  Google Scholar 

  18. C. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175, 8 (1984)

    Google Scholar 

  19. E. Waks et al., Secure communication: quantum cryptography with a photon turnstile. Nature 420, 762–762 (2002)

    Article  ADS  Google Scholar 

  20. T. Heindel et al., Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J. Phys. 14, 083001 (2012)

    Article  ADS  Google Scholar 

  21. C.K. Hong, Z.Y. Ou, L. Mandel, Measurement of subpicosecond time intervals between 2 photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  22. J. Bylander, I. Robert-Philip, I. Abram, Interference and correlation of two independent photons. Eur. Phys. J. D 22, 295–301 (2003)

    Article  ADS  Google Scholar 

  23. S. Maier et al., Bright single photon source based on self-aligned quantum dot-cavity systems. Opt. Sxpress 22, 8136–8142 (2014)

    Article  ADS  Google Scholar 

  24. J.M. Garcia et al., Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 71, 2014–2016 (1997)

    Article  ADS  Google Scholar 

  25. O. Schmidt, Lateral Alignment of Epitaxial Quantum Dots (Springer, Berlin, 2009)

    Google Scholar 

  26. C. Schneider et al., Single site-controlled in(ga)as/gaas quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009)

    Article  ADS  Google Scholar 

  27. J.M. Zajac, W. Langbein, Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities. Phys. Rev. B 86, 195401 (2012)

    Article  ADS  Google Scholar 

  28. P. Royo, R.P. Stanley, M. Ilegems, Planar dielectric microcavity light-emitting diodes: analytical analysis of the extraction efficiency. J. Appl. Phys. 90, 283–293 (2001)

    Article  ADS  Google Scholar 

  29. F. Ding, T. Stoeferle, L.J. Mai, A. Knoll, R.F. Mahrt, Vertical microcavities with high q and strong lateral mode confinement. Phys. Rev. B 87, 161116 (2013)

    Article  ADS  Google Scholar 

  30. W.L. Barnes et al., Solid-state single photon sources: light collection strategies. Eur. Phys. J. D 18, 197–210 (2002)

    ADS  Google Scholar 

  31. D. Press et al., Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010)

    Article  ADS  Google Scholar 

  32. A. Muller et al., Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007)

    Article  ADS  Google Scholar 

  33. S. Ates et al., Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009)

    Article  ADS  Google Scholar 

  34. E.B. Flagg, S.V. Polyakov, T. Thomay, G.S. Solomon, Dynamics of nonclassical light from a single solid-state quantum emitter. Phys. Rev. Lett. 109, 163601 (2012)

    Article  ADS  Google Scholar 

  35. E. Flagg et al., Resonantly driven coherent oscillations in a solid-state quantum emitter. Nat. Phys. 5, 203–207 (2009)

    Article  Google Scholar 

  36. A.N. Vamivakas, Y. Zhao, C.-Y. Lu, M. Atatüre, Spin-resolved quantum-dot resonance fluorescence. Nat. Phys. 5, 198–202 (2009)

    Article  Google Scholar 

  37. Y.M. He et al., On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013)

    Article  ADS  Google Scholar 

  38. Y.-J. Wei et al., Deterministic and robust generation of single photons on a chip with 99.5% indistinguishability using rapid adiabatic passage (2014). arXiv preprint arXiv:1405.1991

  39. E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010)

    Article  ADS  Google Scholar 

  40. R.B. Patel et al., Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010)

    Article  ADS  Google Scholar 

  41. K. Konthasinghe et al., Field-field and photon-photon correlations of light scattered by two remote two-level inas quantum dots on the same substrate. Phys. Rev. Lett. 109, 237403 (2012)

    Article  Google Scholar 

  42. S. Reitzenstein et al., Control of the strong light-matter interaction between an elongated In\(_{0.3}\)Ga\(_{0.7}\)As quantum dot and a micropillar cavity using external magnetic fields. Phys. Rev. Lett. 103, 127401 (2009)

    Article  ADS  Google Scholar 

  43. T. Legero, T. Wilk, A. Kuhn, G. Rempe, Characterization of single photons using two-photon interference. Adv. At. Mol. Opt. Phys. 53, 254 (2006)

    ADS  Google Scholar 

  44. Y. He et al., Indistinguishable tunable single photons emitted by spin-flip raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the great support of the following persons throughout the last years: S. Maier, A. Thoma, Y. He, Y.-M. He, N. Gregersen, J. Mork, J. Schary, M. Lermer, M. Wagenbrenner, L. Worschech, S. Reitzenstein and A. Forchel. We acknowledge financial support by the BMBF (Projects QuaHLRep and Q.com-H) as well as the state of Bavaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Schneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schneider, C., Gold, P., Lu, CY., Höfling, S., Pan, JW., Kamp, M. (2015). Single Semiconductor Quantum Dots in Microcavities: Bright Sources of Indistinguishable Photons. In: Predojević, A., Mitchell, M. (eds) Engineering the Atom-Photon Interaction. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-19231-4_13

Download citation

Publish with us

Policies and ethics