Skip to main content

Cavity Induced Interfacing of Atoms and Light

  • Chapter
  • First Online:

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

This chapter introduces cavity-based light-matter quantum interfaces , with a single atom or ion in strong coupling to a high-finesse optical cavity . We discuss the deterministic generation of indistinguishable single photons from these systems; the atom-photon entanglement inextricably linked to this process; and the information encoding using spatio-temporal modes within these photons. Furthermore, we show how to establish a time-reversal of the aforementioned emission process to use a coupled atom-cavity system as a quantum memory. Along the line, we also discuss the performance and characterisation of cavity photons in elementary linear-optics arrangements with single beam splitters for quantum-homodyne measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\phi _{in}(t)\) is the probability amplitude of the running photon, with \(\int _{-\infty }^{+\infty }|\phi _{in}(t)|^2 dt =1\) and \(|\phi _{in}(t)|^2dt\) the probability of the photon arriving at the mirror within \([t, t+dt]\).

References

  1. D.P. DiVincenzo, Real and realistic quantum computers. Nature 393, 113–114 (1998)

    Article  ADS  Google Scholar 

  2. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computing with linear optics. Nature 409, 46–52 (2001)

    Article  ADS  Google Scholar 

  3. A. Reiserer, G. Rempe, Cavity-based quantum networks with single atoms and optical photons, (2014), arXiv:1412.2889

  4. A. Kuhn, D. Ljunggren, Cavity-based single-photon sources. Contemp. Phys. 51, 289–313 (2010)

    Article  ADS  Google Scholar 

  5. G.S. Solomon, C. Santori, A. Kuhn, Single Emitters in Isolated Quantum Systems. Experimental Methods in the Physical Sciences, vol. 45, Chapter 13. (Elsevier Science, 2013), pp. 467–539

    Google Scholar 

  6. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  7. B.W. Shore, P.L. Knight, The Jaynes-Cummings model. J. Mod. Opt. 40, 1195 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  MATH  Google Scholar 

  9. D. Kleppner, Inhibited spontaneous emission. Phys. Rev. Lett. 47, 233–236 (1981)

    Article  ADS  Google Scholar 

  10. H.J. Carmichael, Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790–2793 (1985)

    Article  ADS  MATH  Google Scholar 

  11. F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Anomalous spontaneous emission time in a microscopic optical cavity. Phys. Rev. Lett. 59, 2955–2958 (1987)

    Article  ADS  Google Scholar 

  12. J.I. Cirac, P. Zoller, H.J. Kimble, H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    Article  ADS  MATH  Google Scholar 

  13. D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. Phys. 48, 771 (2000)

    Article  MATH  Google Scholar 

  14. J. Dilley, P. Nisbet-Jones, B.W. Shore, A. Kuhn, Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012)

    Article  ADS  Google Scholar 

  15. A.D. Boozer, A. Boca, R. Miller, T.E. Northup, H.J. Kimble, Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007)

    Article  ADS  Google Scholar 

  16. M. Mücke et al., Electromagnetically induced transparency with single atoms in a cavity. Nature 465, 755–758 (2010)

    Article  ADS  Google Scholar 

  17. H.P. Specht et al., A single-atom quantum memory. Nature 473, 190 (2011)

    Article  ADS  Google Scholar 

  18. A. Kuhn, M. Hennrich, T. Bondo, G. Rempe, Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999)

    Article  ADS  Google Scholar 

  19. N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Coherent manipulation of atoms and molecules by sequential laser pulses. Adv. At. Mol. Opt. Phys. 46, 55–190 (2001)

    Article  ADS  Google Scholar 

  20. D.J. Heinzen, J.J. Childs, J.E. Thomas, M.S. Feld, Enhanced and inhibited spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett. 58, 1320–1323 (1987)

    Article  ADS  Google Scholar 

  21. S.E. Morin, C.C. Yu, T.W. Mossberg, Strong atom-cavity coupling over large volumes and the observation of subnatural intracavity atomic linewidths. Phys. Rev. Lett. 73, 1489–1492 (1994)

    Article  ADS  Google Scholar 

  22. L.A. Lugiato, Theory of optical bistability, in Progress in Optics, vol. XXI, ed. by E. Wolf (Elsevier Science Publishers, B. V., 1984), pp. 71–216

    Google Scholar 

  23. C.K. Law, J.H. Eberly, Arbitrary control of a quantum electromagnetic field. Phys. Rev. Lett. 76, 1055 (1996)

    Article  ADS  Google Scholar 

  24. C.K. Law, H.J. Kimble, Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997)

    Google Scholar 

  25. A. Kuhn, G. Rempe, Optical cavity QED: fundamentals and application as a single-photon light source, in Experimental Quantum Computation and Information, vol. 148, ed. by F. De Martini, C. Monroe (IOS-Press, Amsterdam, 2002), pp. 37–66

    Google Scholar 

  26. A. Kuhn, M. Hennrich, G. Rempe, Strongly-coupled atom-cavity systems, in Quantum Information Processing, ed. by T. Beth, G. Leuchs (Wiley-VCH, Berlin, 2003), pp. 182–195

    Google Scholar 

  27. S.E. Harris, Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett. 70, 552–555 (1993)

    Article  ADS  Google Scholar 

  28. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  29. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  30. D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, M.D. Lukin, Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001)

    Article  ADS  Google Scholar 

  31. A. Messiah, Quantum Mechanics, vol. 2, Chapter 17. (Wiley, New York, 1958)

    Google Scholar 

  32. J. Kim, O. Benson, H. Kan, Y. Yamamoto, A single photon turnstile device. Nature 397, 500–503 (1999)

    Google Scholar 

  33. C. Brunel, B. Lounis, P. Tamarat, M. Orrit, Triggered source of single photons based on controlled single molecule fluorescence. Phys. Rev. Lett. 83, 2722–2725 (1999)

    Article  ADS  MATH  Google Scholar 

  34. B. Lounis, W.E. Moerner, Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000)

    Article  ADS  MATH  Google Scholar 

  35. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000)

    Article  ADS  Google Scholar 

  36. R. Brouri, A. Beveratos, J.-P. Poizat, P. Grangier, Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000)

    Article  ADS  Google Scholar 

  37. P. Michler et al., Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  ADS  Google Scholar 

  38. C. Santori, M. Pelton, G. Solomon, Y. Dale, Y. Yamamoto, Triggered single photons from a quantum dot. Phys. Rev. Lett. 86, 1502–1505 (2001)

    Article  ADS  MATH  Google Scholar 

  39. Z. Yuan et al., Electrically driven single-photon source. Science 295, 102–105 (2002)

    Article  ADS  Google Scholar 

  40. A. Kuhn, M. Hennrich, G. Rempe, Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  41. P.B.R. Nisbet-Jones, J. Dilley, D. Ljunggren, A. Kuhn, Highly efficient source for indistinguishable single photons of controlled shape. New J. Phys. 13, 103036 (2011)

    Article  ADS  Google Scholar 

  42. M. Hennrich, T. Legero, A. Kuhn, G. Rempe, Photon statistics of a non-stationary periodically driven single-photon source. New J. Phys. 6, 86 (2004)

    Article  ADS  Google Scholar 

  43. J. McKeever et al., Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004)

    Article  ADS  Google Scholar 

  44. M. Hijlkema et al., A single-photon server with just one atom. Nat. Phys. 3, 253–255 (2007)

    Article  Google Scholar 

  45. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Single-atom single-photon quantum interface. Science 317, 488 (2007)

    Article  ADS  Google Scholar 

  46. B. Weber et al., Photon-photon entanglement with a single trapped atom. Phys. Rev. Lett. 102, 030501 (2009)

    Article  ADS  Google Scholar 

  47. S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  48. C. Nölleke et al., Efficient teleportation between remote single-atom quantum memories. Phys. Rev. Lett. 110, 140403 (2013)

    Article  Google Scholar 

  49. Y. Colombe et al., Strong atom-field coupling for bose-einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    Article  ADS  Google Scholar 

  50. M. Trupke et al., Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007)

    Article  ADS  Google Scholar 

  51. B. Dayan et al., A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008)

    Article  ADS  Google Scholar 

  52. T. Aoki et al., Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  53. M. Pöllinger, D. O’Shea, F. Warken, A. Rauschenbeutel, Ultrahigh-Q tunable whispering-gallery-mode microresonator. Phys. Rev. Lett. 103, 053901 (2009)

    Article  ADS  Google Scholar 

  54. A. Rauschenbeutel et al., Step by step engineered many particle entanglement. Science 288, 2024 (2000)

    Article  ADS  Google Scholar 

  55. A. Wallraff et al., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  56. X. Maître et al., Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997)

    Article  ADS  Google Scholar 

  57. S. Brattke, B.T.H. Varcoe, H. Walther, Generation of photon number states on demand via cavity quantum electrodynamics. Phys. Rev. Lett. 86, 3534–3537 (2001)

    Article  ADS  Google Scholar 

  58. F. Brennecke et al., Cavity qed with a bose-einstein condensate. Nature 450, 268–271 (2007)

    Article  ADS  Google Scholar 

  59. V. Vuletić, S. Chu, Laser cooling of atoms, ions, or molecules by coherent scattering. Phys. Rev. Lett. 84, 3787–3790 (2000)

    Article  ADS  Google Scholar 

  60. V. Vuletić, H.W. Chan, A.T. Black, Three-dimensional cavity Doppler cooling and cavity sideband cooling by coherent scattering. Phys. Rev. A 64, 033405 (2001)

    Article  ADS  Google Scholar 

  61. J. McKeever et al., State-insensitive cooling and trapping of single atoms in an optical cavity. Phys. Rev. Lett. 90, 133602 (2003)

    Article  ADS  Google Scholar 

  62. P. Maunz et al., Cavity cooling of a single atom. Nature 428, 50–52 (2004)

    Article  ADS  Google Scholar 

  63. J.K. Thompson, J. Simon, H. Loh, V. Vuletić, A high-brightness source of narrowband. Identical-photon pairs. Science 313, 74–77 (2006)

    Article  ADS  Google Scholar 

  64. K.M. Fortier, S.Y. Kim, M.J. Gibbons, P. Ahmadi, M.S. Chapman, Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)

    Article  ADS  Google Scholar 

  65. M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  Google Scholar 

  66. G.R. Guthörlein, M. Keller, K. Hayasaka, W. Lange, H. Walther, A single ion as a nanoscopic probe of an optical field. Nature 414, 49–51 (2001)

    Article  ADS  Google Scholar 

  67. C. Russo et al., Raman spectroscopy of a single ion coupled to a high-finesse cavity. Appl. Phys. B 95, 205–212 (2009)

    Article  ADS  Google Scholar 

  68. H.G. Barros et al., Deterministic single-photon source from a single ion. New J. Phys. 11, 103004 (2009)

    Article  ADS  Google Scholar 

  69. B.B. Blinov, D.L. Moehring, L.-M. Duan, C. Monroe, Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004)

    Article  ADS  Google Scholar 

  70. J. Volz et al., Observation of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006)

    Article  ADS  Google Scholar 

  71. S. Olmschenk et al., Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  72. T. Bondo, M. Hennrich, T. Legero, G. Rempe, A. Kuhn, Time-resolved and state-selective detection of single freely falling atoms. Opt. Comm. 264, 271–277 (2006)

    Article  ADS  Google Scholar 

  73. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  74. J. Altepeter, E. Jeffrey, P. Kwiat, Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)

    Article  ADS  Google Scholar 

  75. A. Reiserer, N. Kalb, G. Rempe, S. Ritter, A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014)

    Article  ADS  Google Scholar 

  76. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003)

    Article  ADS  Google Scholar 

  77. T. Legero, T. Wilk, M. Hennrich, G. Rempe, A. Kuhn, Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004)

    Article  ADS  Google Scholar 

  78. T. Legero, T. Wilk, A. Kuhn, G. Rempe, Characterization of single photons using two-photon interference. Adv. At. Mol. Opt. Phys. 53, 253 (2006)

    Article  ADS  Google Scholar 

  79. T. Legero, T. Wilk, A. Kuhn, G. Rempe, Time-resolved two-photon quantum interference. Appl. Phys. B 77, 797–802 (2003)

    Article  ADS  Google Scholar 

  80. G.S. Vasilev, D. Ljunggren, A. Kuhn, Single photons made-to-measure. New J. Phys. 12, 063024 (2010)

    Article  ADS  Google Scholar 

  81. P.B.R. Nisbet-Jones, J. Dilley, A. Holleczek, O. Barter, A. Kuhn, Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New J. Phys. 15, 053007 (2013)

    Article  ADS  Google Scholar 

  82. A.J. Bennett et al., Experimental position-time entanglement with degenerate single photons. Phys. Rev. A 77, 023803 (2008)

    Article  ADS  Google Scholar 

  83. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  84. K.S. Choi, H. Deng, J. Laurat, H.J. Kimble, Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008)

    Article  ADS  Google Scholar 

  85. D.N. Matsukevich et al., Entanglement of remote atomic qubits. Phys. Rev. Lett. 96, 030405 (2006)

    Article  ADS  Google Scholar 

  86. B. Sun, M.S. Chapman, L. You, Atom-photon entanglement generation and distribution. Phys. Rev. A 69, 042316 (2004)

    Article  ADS  Google Scholar 

  87. D.F. Walls, G.J. Milburn, Quantum Optics (Springer, Heidelberg, 1994)

    Book  Google Scholar 

  88. A.V. Gorshkov, A. André, M. Fleischhauer, A.S. Sørensen, M.D. Lukin, Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007)

    Google Scholar 

  89. H.-J. Briegel, W. Dür, J.I. Cirac, P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Article  ADS  Google Scholar 

  90. J. Beugnon et al., Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006)

    Article  ADS  Google Scholar 

  91. P. Maunz et al., Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007)

    Article  Google Scholar 

  92. R. Raussendorf, H.-J. Briegel, A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  93. H.P. Büchler, M. Hermele, S.D. Huber, M.P.A. Fisher, P. Zoller, Atomic quantum simulator for lattice gauge theories and ring exchange models. Phys. Rev. Lett. 95, 040402 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Hereby I express my gratitude to all my colleagues and co-workers in my present and past research groups at the University of Oxford and the MPQ in Garching. It has been their engagement and enthusiasm, teamed up with the support from the European Union, the DFG and the EPSRC, which lead to the discovery of the phenomena and the development of the techniques discussed in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kuhn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kuhn, A. (2015). Cavity Induced Interfacing of Atoms and Light. In: Predojević, A., Mitchell, M. (eds) Engineering the Atom-Photon Interaction. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-19231-4_1

Download citation

Publish with us

Policies and ethics