Skip to main content

Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9095))

Abstract

This paper tackles marine energy prediction from the classification point of view, by previously discretising the real objective variable into a set of consecutive categories or ranges. Given that the range of energy flux is enough to obtain an approximation of the amount of energy produced, the purpose of this discretisation is to simplify the prediction task. A special kind of autoregressive models are considered, where the category to be predicted depends on both the previous values of energy flux and a set of meteorological variables estimated by numerical models. Apart from this, this paper introduces two different ways of adjusting the order of the autoregressive models, one based on nested cross-validation and the other one based on a dynamic window. The results show that these kind of models are able to predict the time series in an acceptable way, and that the dynamic window procedure leads to the best accuracy without needing the additional computational cost of adjusting the order of the model.

This work has been partially subsidised by the TIN2014-54583-C2-1-R project of the Spanish Ministry of Economy and Competitiveness (MINECO), FEDER funds, the P2011-TIC-7508 project of the “Junta de Andalucía” (Spain) and by the “Comunidad de Madrid” (Spain), under project number S2013/ICE-2933.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahaj, A.S.: Generating electricity from the oceans. Renewable and Sustainable Energy Reviews 15, 3399–3416 (2011)

    Article  Google Scholar 

  2. de O. Falcao, A.F.: Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews 14, 899–918 (2010)

    Google Scholar 

  3. Fusco, F., Ringwood, J.V.: Short-term wave prediction for real-time control of Wave Energy Converters. IEEE Transactions on Sustainable Energy 1(2), 99–106 (2010)

    Article  Google Scholar 

  4. Richter, M., Magaña, M.E., Sawodny, O., Brekken, T.K.: Nonlinear Model Predictive Control of a Point Absorber Wave Energy Converter. IEEE Transactions on Sustainable Energy 4(1), 118–126 (2013)

    Article  Google Scholar 

  5. Waters, R., Engström, J., Isberg, J., Leijon, M.: Wave climate off the Swedish west coast. Renewable Energy 34(6), 1600–1606 (2009)

    Article  Google Scholar 

  6. Falnes, J.: A review of wave-energy extraction. Marine Structures 20, 185–201 (2007)

    Article  Google Scholar 

  7. NOAA/NDBC: National Oceanic and Atmospheric Administration (NOAA), National Data Buoy Center (NDBC). http://www.ndbc.noaa.gov

  8. Brockwell, P.J., Davis, R.A.: Time series: theory and methods. Springer Science & Business Media (2009)

    Google Scholar 

  9. Guanche, Y., Mínguez, R., Méndez, F.J.: Autoregressive logistic regression applied to atmospheric circulation patterns. Climate Dynamics 42(1–2), 537–552 (2014)

    Article  Google Scholar 

  10. NCEP/NCAR: The NCEP/NCAR Reanalysis Project, NOAA/ESRL Physical Sciences Division. http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml

  11. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  12. Deo, M.C., Naidu, C.S.: Real time wave prediction using neural networks. cean. Engineering 26(3), 191–203 (1998)

    Google Scholar 

  13. Agrawal, J.D., Deo, M.C.: Wave parameter estimation using neural networks. Marine Structures 17, 536–550 (2004)

    Article  Google Scholar 

  14. Tsai, C.P., Lin, C., Shen, J.N.: Neural network for wave forecasting among multi-stations. Ocean Engineering 29(13), 1683–1695 (2002)

    Article  Google Scholar 

  15. Zanaganeh, M., Jamshid-Mousavi, S., Etemad-Shahidi, A.F.: A hybrid genetic algorithm-adaptive network-based fuzzy inference system in prediction of wave parameters. Engineering Applications of Artificial Intelligence 22(8), 1194–1202 (2009)

    Article  Google Scholar 

  16. Castro, A., Carballo, R., Iglesias, G., Rabuñal, J.R.: Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing 23, 194–201 (2014)

    Article  Google Scholar 

  17. Mahjoobi, J., Etemad-Shahidi, A.F., Kazeminezhad, M.H.: Hindcasting of wave parameters using different soft computing methods. Applied Ocean Research 30(1), 28–36 (2008)

    Article  Google Scholar 

  18. Mahjoobi, J., Mosabbeb, E.A.: Prediction of significant wave height using regressive support vector machines. Ocean Engineering 36, 339–347 (2009)

    Article  Google Scholar 

  19. Nitsure, S.P., Londhe, S.N., Khare, K.C.: Wave forecasts using wind information and genetic programming. Ocean Engineering 54, 61–69 (2012)

    Article  Google Scholar 

  20. Ozger, M.: Prediction of ocean wave energy from meteorological variables by fuzzy logic modeling. Expert Systems with Applications 38(5), 6269–6274 (2011)

    Article  Google Scholar 

  21. Reikard, G., Pinson, P., Bidlot, J.R.: Forecasting ocean wave energy: The ECMWF wave model and time series methods. Ocean Engineering 38, 1089–1099 (2011)

    Article  Google Scholar 

  22. Akpinar, A., Komurcu, M.I.: Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Applied Energy 101, 502–512 (2013)

    Article  Google Scholar 

  23. NDBC: National Data Buoy Center (NDBC) - Station 41013 (LLNR 815) - Frying Pan Shoals, NC Buoy. http://www.ndbc.noaa.gov/station_history.php?station=41013

  24. NCEP/NCAR: The NCEP/NCAR Reanalysis Project, Sea Surface Level Variables 6-hourly. http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.surface.html

  25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    MATH  Google Scholar 

  26. Scikit-Learn: Scikit-Learn, Machine Learning in Python. http://scikit-learn.org/stable/

  27. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library for large linear classification. The Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

  28. Liblinear: Liblinear - A Library for Large Linear Classification. http://www.csie.ntu.edu.tw/cjlin/liblinear

  29. McCullagh, P.: Regression Models for Ordinal Data. Journal of the Royal Statistical Society. Series B (Methodological) 42(2), 109–142 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Antonio Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gutiérrez, P.A. et al. (2015). Energy Flux Range Classification by Using a Dynamic Window Autoregressive Model. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9095. Springer, Cham. https://doi.org/10.1007/978-3-319-19222-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19222-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19221-5

  • Online ISBN: 978-3-319-19222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics