Skip to main content

Non Spontaneous Saccadic Movements Identification in Clinical Electrooculography Using Machine Learning

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Abstract

In this paper we evaluate the use of the machine learning algorithms Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Classification and Regression Trees (CART) and Naive Bayes (NB) to identify non spontaneous saccades in clinical electrooculography tests. Our approach tries to solve problems like the use of manually established thresholds present in classical methods like identification by velocity threshold (I-VT) or identification by dispersion threshold (I-DT). We propose a modification to an adaptive threshold estimation algorithm for detecting signal impulses without the need of any user input. Also, a set of features were selected to take advantage of intrinsic characteristics of clinical electrooculography tests. The models were evaluated with signals recorded to subjects affected by Spinocerebellar Ataxia type 2 (SCA2). Results obtained by the algorithm show accuracies over 97%, recalls over 97% and precisions over 91% for the four models evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcalá-Fdez, J., Sánchez, L., García, S., del Jesús, M.J., Ventura, S., Garrell, J.M., Otero, J., Romero, C., Bacardit, J., Rivas, V.M., et al.: KEEL: a software tool to assess evolutionary algorithms for data mining problems. Soft Computing 13(3), 307–318 (2009). http://link.springer.com/article/10.1007/s00500-008-0323-y

  2. Becerra, R., Joya, G., Bermúdez, R.V.G., Velázquez, L., Rodríguez, R., Pino, C.: Saccadic Points Classification Using Multilayer Perceptron and Random Forest Classifiers in EOG Recordings of Patients with Ataxia SCA2. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 115–123. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Becerra Garca, R.A.: Plataforma de procesamiento de electrooculogramas. Caso de estudio: pacientes con Ataxia Espinocerebelosa Tipo 2. Master en matemtica aplicada e informtica para la administracin, Universidad de Holgun, Holgun (2013)

    Google Scholar 

  4. Bonnet, C., Hanuka, J., Rusz, J., Rivaud-Pchoux, S., Sieger, T., Majerov, V., Serranov, T., Gaymard, B., Rika, E.: Horizontal and vertical eye movement metrics: What is important?. Clinical Neurophysiology 124(11), 2216–2229 (2013). http://www.clinph-journal.com/article/S1388245713006378/abstract

  5. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees. CRC Press (1984)

    Google Scholar 

  6. Bulling, A., Ward, J., Gellersen, H., Troster, G.: Eye Movement Analysis for Activity Recognition Using Electrooculography. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(4), 741–753 (2011)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995). http://link.springer.com/article/10.1007/BF00994018

  8. Daye, P.M., Optican, L.M.: Saccade detection using a particle filter. Journal of Neuroscience Methods 235, 157–168 (2014)

    Article  Google Scholar 

  9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006). http://dl.acm.org/citation.cfm?id=1248548

  10. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. Computing in Science and Engineering 9(3), 90–95 (2007)

    Article  Google Scholar 

  11. Inchingolo, P., Spanio, M.: On the Identification and Analysis of Saccadic Eye Movements-A Quantitative Study of the Processing Procedures. IEEE Transactions on Biomedical Engineering BME 32(9), 683–695 (1985)

    Google Scholar 

  12. Jones, E., Oliphant, T., Peterson, P.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/, http://www.citeulike.org/group/2018/article/2644428

  13. Juhola, M.: Median filtering is appropriate to signals of saccadic eye movements. Computers in Biology and Medicine 21(1–2), 43–49 (1991). http://www.sciencedirect.com/science/article/pii/0010482591900347

  14. Juhola, M., Jäntti, V., Pyykkö, I., Magnusson, M., Schalén, L., Åkesson, M.: Detection of saccadic eye movements using a non-recursive adaptive digital filter. Computer Methods and Programs in Biomedicine 21(2), 81–88 (1985). http://www.sciencedirect.com/science/article/pii/0169260785900665

  15. Magosso, E., Provini, F., Montagna, P., Ursino, M.: A wavelet based method for automatic detection of slow eye movements: A pilot study. Medical Engineering & Physics 28(9), 860–875 (2006). http://www.sciencedirect.com/science/article/pii/S1350453306000154

  16. Marmor, M.F., Zrenner, E.: Standard for clinical electro-oculography. Documenta Ophthalmologica 85(2), 115–124 (1993). http://dx.doi.org/10.1007/BF01371127

  17. McKinney, W.: Data Structures for Statistical Computing in Python, pp. 51–56 (2010). http://conference.scipy.org/proceedings/scipy2010/mckinney.html

  18. Nystrm, M., Holmqvist, K.: An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior Research Methods 42(1), 188–204 (2010). http://link.springer.com/article/10.3758/BRM.42.1.188

  19. Oliphant, T.E.: Python for scientific computing. Computing in Science & Engineering 9(3), 10–20 (2007). http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.58

  20. Otero-Millan, J., Castro, J.L.A., Macknik, S.L., Martinez-Conde, S.: Unsupervised clustering method to detect microsaccades. Journal of Vision 14(2), 18 (2014)

    Article  Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011). http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

  22. Pettersson, K., Jagadeesan, S., Lukander, K., Henelius, A., Hæggström, E., Müller, K.: Algorithm for automatic analysis of electro-oculographic data. Biomedical Engineering Online 12(1), 110 (2013)

    Article  Google Scholar 

  23. Prez, F., Granger, B.E.: IPython: A System for Interactive Scientific Computing. Computing in Science & Engineering 9(3), 21–29 (2007). http://scitation.aip.org/content/aip/journal/cise/9/3/10.1109/MCSE.2007.53

  24. Rodrguez-Labrada, R., Velzquez-Prez, L.: Eye movement abnormalities in spinocerebellar ataxias. Spinocerebellar Ataxias, pp. 59–76. Intech, Rijeka (2012)

    Google Scholar 

  25. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (December (2009)

    Google Scholar 

  26. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: ETRA 2000, pp. 71–78. ACM, New York (2000). http://doi.acm.org/10.1145/355017.355028

  27. Silverman, B.W., Jones, M.C.: An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation. International Statistical Review / Revue Internationale de Statistique 57(3), 233–238 (1989). http://www.jstor.org/stable/1403796

  28. Tigges, P., Kathmann, N., Engel, R.R.: Identification of input variables for feature based artificial neural networks-saccade detection in EOG recordings. International Journal of Medical Informatics 45(3), 175–184 (1997). http://www.sciencedirect.com/science/article/pii/S1386505697000427

  29. Velzquez-Prez, L., Rodrguez-Labrada, R., Garca-Rodrguez, J.C., Almaguer-Mederos, L.E., Cruz-Mario, T., Laffita-Mesa, J.M.: A comprehensive review of spinocerebellar ataxia type 2 in cuba. The Cerebellum 10(2), 184–198 (2011). http://link.springer.com/article/10.1007/s12311-011-0265-2

  30. Witten, I.H., Frank, E., Hall, M.A.: Data Mining. Practical Machine Learning Tools and Techniques, 3 edn. Morgan Kaufmann (2011)

    Google Scholar 

  31. Wyatt, H.J.: Detecting saccades with jerk. Vision Research 38(14), 2147–2153 (1998). http://www.sciencedirect.com/science/article/pii/S0042698997004100

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Becerra-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Becerra-García, R. et al. (2015). Non Spontaneous Saccadic Movements Identification in Clinical Electrooculography Using Machine Learning. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9095. Springer, Cham. https://doi.org/10.1007/978-3-319-19222-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19222-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19221-5

  • Online ISBN: 978-3-319-19222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics