Skip to main content

Modeling Retina Adaptation with Multiobjective Parameter Fitting

  • Conference paper
  • First Online:
  • 1936 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9095))

Abstract

The retina continually adapts its kinetics, average response and sensitivity to the conditions of the environment. Retinal neurons adapt essentially to the mean light intensity and its temporal fluctuations over the mean, also called temporal contrast. Contrast adaptation has two distinct temporal expressions with fast and slow components. Here, we present a configurable retina simulation environment that accurately reproduces both contrast components. A contrast increase in the visual input accelerates kinetics of the filter, reduces sensitivity and depolarizes the membrane potential. Slow adaptation does not affect the temporal response but produces a progressive hyperpolarization of membrane potential. The implemented model for contrast adaptation provides a neural basis of each retinal stage, from photoreceptors up to ganglion cells, to explain the observed retina behavior. Both forms of contrast adaptation, fast and slow, are captured by a combined model of shunting feedback of bipolar cells and short-term plasticity (STP) at the bipolar-to-ganglion synapse. Biological accuracy of the model is evaluated by comparison of the measured neural response with the simulated response fitted to published physiological data. One problem with the simulated model is finding its optimal parameter settings, since the model response is described by a complex system of different retina stages with linear, nonlinear and feedback connections. We propose to use a multiobjective genetic optimization to automatically search the parameter space and easily find a feasible configuration solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rieke, F., Rudd, M.E.: The challenges natural images pose for visual adaptation. Neuron 64(5), 605–616 (2009)

    Article  Google Scholar 

  2. Demb, J.B.: Functional circuitry of visual adaptation in the retina. The Journal of Physiology 586(18), 4377–4384 (2008)

    Article  Google Scholar 

  3. Kohn, A.: Visual adaptation: physiology, mechanisms, and functional benefits. Journal of Neurophysiology 97(5), 3155–3164 (2007)

    Article  Google Scholar 

  4. Ozuysal, Y., Baccus, S.A.: Linking the computational structure of variance adaptation to biophysical mechanisms. Neuron 73(5), 1002–1015 (2012)

    Article  Google Scholar 

  5. Beaudoin, D.L., Borghuis, B.G., Demb, J.B.: Cellular basis for contrast gain control over the receptive field center of mammalian retinal ganglion cells. The Journal of Neuroscience 27(10), 2636–2645 (2007)

    Article  Google Scholar 

  6. Baccus, S.A., Meister, M.: Fast and slow contrast adaptation in retinal circuitry. Neuron 36(5), 909–919 (2002)

    Article  Google Scholar 

  7. Kim, K.J., Rieke, F.: Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. The Journal of Neuroscience 21(1), 287–299 (2001)

    Google Scholar 

  8. Chander, D., Chichilnisky, E.: Adaptation to temporal contrast in primate and salamander retina. The Journal of Neuroscience 21(24), 9904–9916 (2001)

    Google Scholar 

  9. Manookin, M.B., Demb, J.B.: Presynaptic mechanism for slow contrast adaptation in mammalian retinal ganglion cells. Neuron 50(3), 453–464 (2006)

    Article  Google Scholar 

  10. Wohrer, A., Kornprobst, P.: Virtual retina: a biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26(2), 219–249 (2009)

    Article  MathSciNet  Google Scholar 

  11. Mante, V., Bonin, V., Carandini, M.: Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron 58(4), 625–638 (2008)

    Article  Google Scholar 

  12. van Hateren, J.V., Rüttiger, L., Sun, H., Lee, B.: Processing of natural temporal stimuli by macaque retinal ganglion cells. The Journal of Neuroscience 22(22), 9945–9960 (2002)

    Google Scholar 

  13. Victor, J.D.: The dynamics of the cat retinal x cell centre. The Journal of Physiology 386(1), 219–246 (1987)

    Article  Google Scholar 

  14. Martínez-Cañada, P., Morillas, C., Nieves, J.L., Pino, B., Pelayo, F.: First stage of a human visual system simulator: the retina. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2015. LNCS, vol. 9016, pp. 118–127. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Rieke, F.: Temporal contrast adaptation in salamander bipolar cells. The Journal of Neuroscience 21(23), 9445–9454 (2001)

    Google Scholar 

  16. Euler, T., Haverkamp, S., Schubert, T., Baden, T.: Retinal bipolar cells: elementary building blocks of vision. Nature Reviews Neuroscience 15(8), 507–519 (2014)

    Article  Google Scholar 

  17. Jarsky, T., Cembrowski, M., Logan, S.M., Kath, W.L., Riecke, H., Demb, J.B., Singer, J.H.: A synaptic mechanism for retinal adaptation to luminance and contrast. The Journal of Neuroscience 31(30), 11003–11015 (2011)

    Article  Google Scholar 

  18. Dunn, F.A., Rieke, F.: Single-photon absorptions evoke synaptic depression in the retina to extend the operational range of rod vision. Neuron 57(6), 894–904 (2008)

    Article  Google Scholar 

  19. Singer, J.H., Diamond, J.S.: Vesicle depletion and synaptic depression at a mammalian ribbon synapse. Journal of Neurophysiology 95(5), 3191–3198 (2006)

    Article  Google Scholar 

  20. Kim, K.J., Rieke, F.: Slow na+ inactivation and variance adaptation in salamander retinal ganglion cells. The Journal of Neuroscience 23(4), 1506–1516 (2003)

    Google Scholar 

  21. Zaghloul, K.A., Boahen, K., Demb, J.B.: Contrast adaptation in subthreshold and spiking responses of mammalian y-type retinal ganglion cells. The Journal of Neuroscience 25(4), 860–868 (2005)

    Article  Google Scholar 

  22. Zaghloul, K.A., Boahen, K., Demb, J.B.: Different circuits for on and off retinal ganglion cells cause different contrast sensitivities. The Journal of Neuroscience 23(7), 2645–2654 (2003)

    Google Scholar 

  23. Dayan, P., Abbott, L.: Theoretical neuroscience: computational and mathematical modeling of neural systems. Journal of Cognitive Neuroscience 15(1), 154–155 (2003)

    Article  Google Scholar 

  24. Wohrer, A.: Model and large-scale simulator of a biological retina, with contrast gain control. PhD thesis, Nice (2008)

    Google Scholar 

  25. Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Research 5(12), 583–601 (1965)

    Article  Google Scholar 

  26. Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. The Journal of Physiology 187(3), 517–552 (1966)

    Article  Google Scholar 

  27. Smith, V.C., Pokorny, J., Lee, B.B., Dacey, D.M.: Primate horizontal cell dynamics: an analysis of sensitivity regulation in the outer retina. Journal of Neurophysiology 85(2), 545–558 (2001)

    Google Scholar 

  28. Torre, V., Poggio, T.: A synaptic mechanism possibly underlying directional selectivity to motion. Proceedings of the Royal Society of London. Series B. Biological Sciences 202(1148), 409–416 (1978)

    Article  Google Scholar 

  29. Amthor, F.R., Grzywacz, N.M.: Nonlinearity of the inhibition underlying retinal directional selectivity. Visual Neuroscience 6(03), 197–206 (1991)

    Article  Google Scholar 

  30. Carandini, M., Heeger, D.J., Movshon, J.A.: Linearity and normalization in simple cells of the macaque primary visual cortex. The Journal of Neuroscience 17(21), 8621–8644 (1997)

    Google Scholar 

  31. Kastner, D.B., Baccus, S.A.: Coordinated dynamic encoding in the retina using opposing forms of plasticity. Nature Neuroscience 14(10), 1317–1322 (2011)

    Article  Google Scholar 

  32. Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research 13, 2171–2175 (2012)

    MATH  Google Scholar 

  33. Gewaltig, M.-O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Martínez-Cañada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Martínez-Cañada, P., Morillas, C., Romero, S., Pelayo, F. (2015). Modeling Retina Adaptation with Multiobjective Parameter Fitting. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9095. Springer, Cham. https://doi.org/10.1007/978-3-319-19222-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19222-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19221-5

  • Online ISBN: 978-3-319-19222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics