Advertisement

Skeletal Muscle and Peripheral Nerves

  • Nicholas D. MantonEmail author
Chapter

Abstract

Neuromuscular disorders in the fetus and neonate are rare and diverse with overlapping clinical features and genetic causes. Presentation typically is with contractures alone or with additional features such as hydrops, pulmonary hypoplasia, and cleft palate constituting the fetal akinesia syndrome. Neonates may also present with congenital hypotonia. These disorders include amyoplasia, spinal muscular atrophies, congenital myopathies, the congenital muscular dystrophies, congenital myasthenic syndromes, metabolic myopathies, and inherited peripheral neuropathies. A thorough, multidisciplinary approach is required to the diagnosis of these disorders and is described at the end of this chapter along with the approach to the perinatal neuromuscular autopsy.

Keywords

Skeletal muscle Peripheral nerves Neuromuscular disorders Fetus Neonate Congenital Diagnosis Autopsy 

References

  1. 1.
    Tajbakhsh S, Buckingham M. The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol. 2000;48:225–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Buckingham M, Mayeuf A. Skeletal muscle development. In: Hill JA, Olson EN, editors. Muscle – fundamental biology and mechanism of disease, vol. 1. Amsterdam: Elsevier; 2012. p. 749–61.Google Scholar
  3. 3.
    Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003;202:59–68.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bailey P, Holowacz T, Lassar A. The origin of skeletal muscle stem cells in the embryo and adult. Curr Opin Cell Biol. 2001;13:679–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Yan X, Zhu M-J, Dodson MV, et al. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genom. 2013;1:29–38.CrossRefGoogle Scholar
  6. 6.
    Hall J. Analysis of Pena Shokeir phenotype (Invited editorial comment). Am J Med Genet. 1986;25:99–117.PubMedCrossRefGoogle Scholar
  7. 7.
    Hall J. Arthrogryposes (multiple congenital contractures). In: Rimoin D, editor. Principles and practise of medical genetics. 4th ed. New York: Churchill Livingstone; 2002. p. 4182–235.Google Scholar
  8. 8.
    Hall JG. Arthrogryposis (multiple congenital contractures): diagnostic approach to etiology, classification, genetics and general principles. Eur J Med Genet. 2014;1–9.Google Scholar
  9. 9.
    Porter H. Lethal arthrogryposis multiplex congenita (fetal akinesia deformation sequence, FADS). Pediatr Pathol. 1995;15:617–37.Google Scholar
  10. 10.
    Pena S, Shokeir M. Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: a lethal condition. J Pediatr. 1974;85:373–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Chen H, Blumberg B, Immken L, et al. The Pena-Shokeir syndrome: report of five cases and further delineation of the syndrome. Am J Med Genet. 1983;16:213–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Herva R, Leisti J, Kirkinen P, et al. A lethal autosomal recessive syndrome of multiple congenital contractures. Am J Med Genet. 1985;20:431–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Lindhout D, Hageman G, Beemer F, et al. The Pena-Shokeir syndrome: report of nine Dutch cases. Am J Med Genet. 1985;21:655–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Moessinger A. Fetal akinesia deformation sequence: an animal model. Pediatrics. 1983;72:857–63.PubMedGoogle Scholar
  15. 15.
    Witters I, Moerman P, Fryns J. Fetal akinesia deformation sequence: a study of 30 consecutive in utero diagnoses. Am J Med Genet. 2002;113:23–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Hall J, Reed S, Driscoll E. Part I Amyoplasia: a common sporadic condition with congenital contractures. Am J Med Genet. 1983;15:571–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Hall J, Reed S, McGillivray B, et al. Part II Amyoplasia: twinning in amyoplasia – a specific type of arthrogryposis with an apparent excess of discordantly affected identical twins. Am J Med Genet. 1983;15:591–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hall JG, Aldinger KA, Tanaka KI. Amyoplasia revisited. Am J Med Genet. 2014;164A:700–30.PubMedCrossRefGoogle Scholar
  19. 19.
    Banker B. Arthrogryposis multiplex congenita: spectrum of pathologic changes. Hum Pathol. 1986;17:656–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Clarren S, Hall J. Neuropathologic findings in spinal cords of 10 infants with arthrogryposis. J Neurol Sci. 1983;58:89–102.PubMedCrossRefGoogle Scholar
  21. 21.
    Banker B. Neuropathologic aspects of arthrogryposis multiplex congenita. Clin Orthop Relat Res. 1985;194:30–43.Google Scholar
  22. 22.
    Cox P, Brueton L, Bjelogrlic P, et al. Diversity of neuromuscular pathology in lethal multiple pterygium syndrome. Pediatr Dev Pathol. 2002;6:59–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Froster U, Stallmach T, Wisser J, et al. Lethal multiple pterygium syndrome: suggestion for a consistent pathological workup and review of reported cases. Am J Med Genet. 1997;68:82–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Moerman P, Fryns J, Cornelis A, et al. Pathogenesis of the lethal multiple pterygium syndrome. Am J Med Genet. 1990;35:415–21.PubMedCrossRefGoogle Scholar
  25. 25.
    Hall J. Editorial comment: the lethal multiple pterygium syndromes. Am J Med Genet. 1984;17:803–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Morgan NV, Brueton LA, Cox P, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Michalk A, Stricker S, Becker J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hall J, Reed S, Greene G. The distal arthrogryposis. Am J Med Genet. 1982;11:185–239.PubMedCrossRefGoogle Scholar
  29. 29.
    Bamshad M, Jorde L, Carey J. A revised and extended classification of the distal arthrogryposes. Am J Med Genet. 1996;65:277–81.PubMedCrossRefGoogle Scholar
  30. 30.
    McMillin MJ, Below JE, Shively KM, et al. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet. 2013;92:150–6.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Potter E. Bilateral absence of ureters and kidneys: report of 50 cases. Obstet Gynecol. 1965;25:3.PubMedGoogle Scholar
  32. 32.
    Hammond E, Donnenfeld A. Fetal akinesia. Obstet Gynecol Surv. 1995;50:240–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez J, Palacios J. Pathogenetic mechanisms of fetal akinesia deformation sequence and oligohydramnios sequence. Am J Med Genet. 1991;40:284–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Witt D, Hayden M, Holbrook K, et al. Restrictive dermopathy: a newly recognised autosomal recessive skin dysplasia. Am J Med Genet. 1986;24:631–48.PubMedCrossRefGoogle Scholar
  35. 35.
    Navarro C, De Sandre-Giovannoli A, Bernard R, et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganisation and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum Mol Genet. 2004;13:2493–503.PubMedCrossRefGoogle Scholar
  36. 36.
    Mau U, Kendziorra H, Kaiser P, et al. Restrictive dermopathy: report and review. Am J Med Genet. 1997;71:179–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Wesche W, Cutlan R, Khare V, et al. Restrictive dermopathy: report of a case and review of the literature. J Cutan Pathol. 2001;28:211–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Nijsten T, De Moor A, Colpaert C, et al. Restrictive dermopathy: a case report and a critical review of all hypotheses of its origin. Pediatr Dermatol. 2002;19:67–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Shevell M, Rosenblatt B, Silver K, et al. Congenital inflammatory myopathy. Neurology. 1990;40:1111–4.PubMedCrossRefGoogle Scholar
  40. 40.
    McNeil S, Woulfe J, Ross C, et al. Congenital inflammatory myopathy: a demonstrative case and proposed diagnostic classification. Muscle Nerve. 2002;25:259–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Dubowitz V, Sewry CA, Oldfors A. Muscle biopsy – a practical approach. 4th ed. Saunders Elsevier, China; 2013.Google Scholar
  42. 42.
    Mailman M, Heinz J, Papp A, et al. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. 2002;4:20–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Grohmann K, Schuelke M, Diers A, et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat Genet. 2001;29:75–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Kizilates S, Talim B, Sel K, et al. Severe lethal spinal muscular atrophy variant with arthrogryposis. Pediatr Neurol. 2005;32:201–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Darras B. Neuromuscular disorders in the newborn. Clin Perinatol. 1997;24:827–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Machuca-Tzili L, Brook D, Hilton-Jones D. Clinical and molecular aspects of the myotonic dystrophies: a review. Muscle Nerve. 2005;32:1–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Brunner H, Bruggenwirth H, Nillesen W, et al. Influence of sex of the transmitting parent as well as parental allele size of the CTG expansion in myotonic dystrophy (DM). Am J Hum Genet. 1993;53:1016–23.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Farkas E, Tome F, Fardeau M, et al. Histochemical and ultrastructural study of muscle biopsies in 3 cases of dystrophia myotonica in the newborn child. J Neurol Sci. 1974;21:273–88.PubMedCrossRefGoogle Scholar
  49. 49.
    Redman J, Fenwick R, Fu Y, et al. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA. 1993;269:1960–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Riggs J, Bodensteiner J, Schochet S. Congenital myopathies/dystrophies. Neurol Clin N Am. 2003;21:779–94.CrossRefGoogle Scholar
  51. 51.
    Lammens M, Moerman P, Fryns J, et al. Fetal akinesia sequence caused by nemaline myopathy. Neuropediatrics. 1997;28:116–9.PubMedCrossRefGoogle Scholar
  52. 52.
    North KN, Wang CH, Clarke N, et al. Approach to the congenital myopathies. Neuromuscul Disord. 2014;24:97–116.PubMedCrossRefGoogle Scholar
  53. 53.
    Jungbluth H, Sewry C, Muntoni F. What’s new in neuromuscular disorders? The congenital myopathies. Eur J Paedaitr Neurol. 2003;7:23–30.CrossRefGoogle Scholar
  54. 54.
    Spiro A, Shy G, Gonatas N. Myotubular myopathy. Arch Neurol. 1966;14:1–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke NF, North KN. Congenital fibre type disproportion – 30 years on. J Neuropathol Exp Neurol. 2003;62:977–89.PubMedCrossRefGoogle Scholar
  56. 56.
    Bonnemann CG, Wang CH, Quijano-Roy S, et al. Diagnostic approach to the congenital muscular dystrophies. Neuromuscul Disord. 2014;24:289–311.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kirschner J. Congenital muscular dystrophies. Handb Clin Neurol. 2013;113:1377–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Muntoni F, Voit T. The congenital muscular dystrophies in 2004: a century of exciting progress. Neuromuscul Disord. 2004;14:635–49.PubMedCrossRefGoogle Scholar
  59. 59.
    Sunada Y, Edgar T, Lotz B, et al. Merosin-negative congenital muscular dystrophy associated with extensive brain abnormalities. Neurology. 1995;45:2084–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Jimenez-Mallebrera C, Brown S, Sewry C, et al. Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci. 2005;62:809–23.PubMedCrossRefGoogle Scholar
  61. 61.
    Brueton L, Huson S, Cox P, et al. Asymptomatic maternal myasthenia as a cause of the Pena-Shokeir phenotype. Am J Med Genet. 2000;92:1–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Engel A. 73rd ENMC international workshop: congenital myasthenic syndromes 22–23 October 199, Naarden, The Netherlands. Neuromuscul Disord. 2001;11:315–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Engel AG, Shen XM, Selcen D, et al. What have we learned from the congenital myasthenic syndromes? J Mol Neurosci. 2010;40:143–53.PubMedCrossRefGoogle Scholar
  64. 64.
    Eymard B, Hantai D, Estournet B. Congenital myasthenic syndromes. Handb Clin Neurol. 2013;113:1469–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Chaouch A, Beeson D, Hantai D, et al. 186th ENMC International workshop: congenital myasthenic syndromes 24–26 June 2011, Naarden, The Netherlands. Neuromuscul Disord. 2012;22:566–76.PubMedCrossRefGoogle Scholar
  66. 66.
    Tein I. Neonatal metabolic myopathies. Semin Perinatol. 1999;23:125–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Ravenscroft G, Thompson EM, Todd EJ, et al. Whole exome sequencing in foetal akinesia expands the genotype-phenotype spectrum of GBE1 glycogen storage disease mutations. Neuromuscul Disord. 2013;23:165–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Vladutiu G. Metabolic myopathies. The molecular diagnosis of metabolic myopathies. Neurol Clin. 2000;18:53–104.PubMedCrossRefGoogle Scholar
  69. 69.
    Dyck P. Peripheral nerves. In: Graham D, Lantos P, editors. Greenfield’s neuropathology. 7th ed. New York: Arnold; 2002.Google Scholar
  70. 70.
    Landrieu P, Baets J, De Jonghe P. Hereditary motor-sensory, motor and sensory neuropathies in childhood. Handb Clin Neurol. 2013;113:1414–32.Google Scholar
  71. 71.
    Dubourg O, Azzedine H, Verny C, et al. Autosomal recessive forms of demyelinating Charcot-Marie-Tooth disease. Neuromolecular Med. 2006;8:75–86.PubMedCrossRefGoogle Scholar
  72. 72.
    Scott K, Kothari K. Hereditary neuropathies. Semin Neurol. 2005;25:174–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Ryan M, Ouvrier R. Hereditary peripheral neuropathies of childhood. Curr Opin Neurol. 2005;18:105–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Klein C. Pathology and molecular genetics of inherited neuropathy. J Neurol Sci. 2004;220:141–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of Anatomical PathologySA Pathology at the Women’s and Children’s HospitalAdelaideAustralia

Personalised recommendations