Advertisement

Acquired Diseases of the Nervous System

  • Colin SmithEmail author
  • Thomas S. Jacques
Chapter

Abstract

Acquired disorders of the nervous system are responsible for considerable perinatal mortality and for devastating chronic handicap in children, usually manifesting as cerebral palsy. Data from the Centers for Disease Control and Prevention (CDC) suggest a prevalence of cerebral palsy of between 1.5 and more than 4 per 1000 live births (http://www.cdc.gov/ncbddd/cp/data.html). Identification of acquired lesions and their distinction from genetic disorders can be difficult because damage to the fetal brain disrupts the normal sequence of development and can lead to malformations. Furthermore, a number of genetic disorders can cause destructive lesions in the fetal and perinatal brain that resemble acquired insults. This chapter describes the more common acquired conditions likely to be encountered in routine postmortem examinations of neonates and fetuses.

Keywords

Brain Spinal cord Fetus Neonate Pathological reaction Injury Trauma Intracranial hemorrhage Subdural hemorrhage Hypoxia Ischemia Infection Metabolic disorder 

References

  1. 1.
    Raybaud C, Ahmad T, Rastegar N, Shroff M, Al Nassar M. The premature brain: developmental and lesional anatomy. Neuroradiology. 2013;55:23–40.PubMedGoogle Scholar
  2. 2.
    Roessmann U, Gambetti P. Pathological reaction of astrocytes in perinatal brain injury. Immunohistochemical study. Acta Neuropathol. 1986;70:302–7.PubMedGoogle Scholar
  3. 3.
    Becher JC, Bell JE, Keeling JW, McIntosh N, Wyatt B. The scottish perinatal neuropathology study: clinicopathological correlation in early neonatal deaths. Arch Dis Child Fetal Neonatal Ed. 2004;89:F399–407.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Archie JG, Collins JS, Lebel RR. Quantitative standards for fetal and neonatal autopsy. Am J Clin Pathol. 2006;126:256–65.PubMedGoogle Scholar
  5. 5.
    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.PubMedGoogle Scholar
  6. 6.
    Del Bigio MR, Becker LE. Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol. 1994;20:144–51.PubMedGoogle Scholar
  7. 7.
    Paine SM, Willsher AR, Nicholson SL, Sebire NJ, Jacques TS. Characterization of a population of neural progenitor cells in the infant hippocampus. Neuropathol Appl Neurobiol. 2014;40:544–50.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, et al. Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol. 2006;497:199–208.PubMedGoogle Scholar
  9. 9.
    Leech RW, Kohnen P. Subependymal and intraventricular hemorrhages in the newborn. Am J Pathol. 1974;77:465–75.PubMedPubMedCentralGoogle Scholar
  10. 10.
    DiMario Jr FJ, Clancy R. Symmetrical thalamic degeneration with calcifications of infancy. Am J Dis Child. 1989;143:1056–60.PubMedGoogle Scholar
  11. 11.
    Boppana SB, Fowler KB, Vaid Y, Hedlund G, Stagno S, Britt WJ, et al. Neuroradiographic findings in the newborn period and long-term outcome in children with symptomatic congenital cytomegalovirus infection. Pediatrics. 1997;99:409–14.PubMedGoogle Scholar
  12. 12.
    Barth PG. The neuropathology of aicardi-goutieres syndrome. Eur J Paediatr Neurol. 2002;6:A27–31; discussion A37–29, A77–86.PubMedGoogle Scholar
  13. 13.
    Briggs TA, Wolf NI, D’Arrigo S, Ebinger F, Harting I, Dobyns WB, et al. Band-like intracranial calcification with simplified gyration and polymicrogyria: a distinct “pseudo-torch” phenotype. Am J Med Genet A. 2008;146A:3173–80.PubMedGoogle Scholar
  14. 14.
    Squier M, Chamberlain P, Zaiwalla Z, Anslow P, Oxbury J, Gould S, et al. Five cases of brain injury following amniocentesis in mid-term pregnancy. Dev Med Child Neurol. 2000;42:554–60.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Becher JC, Bell JE, Keeling JW, Liston WA, McIntosh N, Wyatt B. The scottish perinatal neuropathology study–clinicopathological correlation in stillbirths. BJOG. 2006;113:310–7.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Clark SM, Ghulmiyyah LM, Hankins GD. Antenatal antecedents and the impact of obstetric care in the etiology of cerebral palsy. Clin Obstet Gynecol. 2008;51:775–86.PubMedGoogle Scholar
  17. 17.
    Jensen A, Garnier Y, Middelanis J, Berger R. Perinatal brain damage–from pathophysiology to prevention. Eur J Obstet Gynecol Reprod Biol. 2003;110:S70–9.PubMedGoogle Scholar
  18. 18.
    Burd I, Balakrishnan B, Kannan S. Models of fetal brain injury, intrauterine inflammation, and preterm birth. Am J Reprod Immunol. 2012;67:287–94.PubMedGoogle Scholar
  19. 19.
    Dupuis O, Silveira R, Dupont C, Mottolese C, Kahn P, Dittmar A, et al. Comparison of “instrument-associated” and “spontaneous” obstetric depressed skull fractures in a cohort of 68 neonates. Am J Obstet Gynecol. 2005;192:165–70.PubMedGoogle Scholar
  20. 20.
    Govaert P, Defoort P, Wigglesworth JS. Cranial haemorrhage in the term newborn infant. London: Mac Keith; 1993.Google Scholar
  21. 21.
    Takagi T, Nagai R, Wakabayashi S, Mizawa I, Hayashi K. Extradural hemorrhage in the newborn as a result of birth trauma. Childs Brain. 1978;4:306–18.Google Scholar
  22. 22.
    Kroon E, Bok LA, Halbertsma F. Spontaneous perinatal epidural haemorrhage in a newborn. BMJ Case Rep. 2012;2012:1–3.Google Scholar
  23. 23.
    Whitby EH, Griffiths PD, Rutter S, Smith MF, Sprigg A, Ohadike P, et al. Frequency and natural history of subdural haemorrhages in babies and relation to obstetric factors. Lancet. 2004;363:846–51.Google Scholar
  24. 24.
    Looney CB, Smith JK, Merck LH, Wolfe HM, Chescheir NC, Hamer RM, et al. Intracranial hemorrhage in asymptomatic neonates: prevalence on mr images and relationship to obstetric and neonatal risk factors. Radiology. 2007;242:535–41.Google Scholar
  25. 25.
    Rooks VJ, Eaton JP, Ruess L, Petermann GW, Keck-Wherley J, Pedersen RC. Prevalence and evolution of intracranial hemorrhage in asymptomatic term infants. AJNR. 2008;29:1082–9.PubMedGoogle Scholar
  26. 26.
    Cohen MC, Scheimberg I. Evidence of occurrence of intradural and subdural hemorrhage in the perinatal and neonatal period in the context of hypoxic ischemic encephalopathy: an observational study from two referral institutions in the united kingdom. Pediatr Dev Pathol. 2009;12:169–76.PubMedGoogle Scholar
  27. 27.
    Kelly P, Hayman R, Shekerdemian LS, Reed P, Hope A, Gunn J, et al. Subdural hemorrhage and hypoxia in infants with congenital heart disease. Pediatrics. 2014;134:e773–81.PubMedGoogle Scholar
  28. 28.
    Hurley M, Dineen R, Padfield CJ, Wilson S, Stephenson T, Vyas H, et al. Is there a causal relationship between the hypoxia-ischaemia associated with cardiorespiratory arrest and subdural haematomas? An observational study. Br J Radiol. 2010;83:736–43.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Croft PR, Reichard RR. Microscopic examination of grossly unremarkable pediatric dura mater. Am J Forensic Med Pathol. 2009;30:10–3.PubMedGoogle Scholar
  30. 30.
    Hoskote A, Richards P, Anslow P, McShane T. Subdural haematoma and non-accidental head injury in children. Child Nerv Syst. 2002;18:311–7.PubMedGoogle Scholar
  31. 31.
    Wigglesworth JS, Husemeyer RP. Intracranial birth trauma in vaginal breech delivery: the continued importance of injury to the occipital bone. Br J Obstet Gynaecol. 1977;84:684–91.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Stephens RP, Richardson AC, Lewin JS. Bilateral subdural hematomas in a newborn infant. Pediatrics. 1997;99:619–21.PubMedGoogle Scholar
  33. 33.
    Kemp AM. Investigating subdural haemorrhage in infants. Arch Dis Child. 2002;86:98–102.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Volpe JJ. Neurology of the newborn. 5th ed. Philadelphia: Saunders; 2008.Google Scholar
  35. 35.
    Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Volpe JJ. Systemic inflammation, oligodendroglial maturation, and the encephalopathy of prematurity. Ann Neurol. 2011;70:525–9.PubMedGoogle Scholar
  37. 37.
    Balasubramanian M, Collins AL. Aplasia cutis congenita, terminal limb defects and periventricular leukomalacia in one sibling with minor findings in the other-probable autosomal recessive adams-oliver syndrome. Eur J Med Genet. 2009;52:234–8.PubMedGoogle Scholar
  38. 38.
    Papadopoulou E, Sifakis S, Raissaki M, Germanakis I, Kalmanti M. Antenatal and postnatal evidence of periventricular leukomalacia as a further indication of vascular disruption in adams-oliver syndrome. Am J Med Genet A. 2008;146A:2545–50.PubMedGoogle Scholar
  39. 39.
    Kinney HC, Panigrahy A, Newburger JW, Jonas RA, Sleeper LA. Hypoxic-ischemic brain injury in infants with congenital heart disease dying after cardiac surgery. Acta Neuropathol. 2005;110:563–78.PubMedGoogle Scholar
  40. 40.
    Kinney HC. The encephalopathy of prematurity: one pediatric neuropathologist’s perspective. Semin Pediatr Neurol. 2009;16:179–90.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Billiards SS, Haynes RL, Folkerth RD, Borenstein NS, Trachtenberg FL, Rowitch DH, et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 2008;18:153–63.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, et al. Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol. 2012;71:397–406.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Andiman SE, Haynes RL, Trachtenberg FL, Billiards SS, Folkerth RD, Volpe JJ, et al. The cerebral cortex overlying periventricular leukomalacia: analysis of pyramidal neurons. Brain Pathol. 2010;20:803–14.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedGoogle Scholar
  45. 45.
    Nikas I, Dermentzoglou V, Theofanopoulou M, Theodoropoulos V. Parasagittal lesions and ulegyria in hypoxic-ischemic encephalopathy: neuroimaging findings and review of the pathogenesis. J Child Neurol. 2008;23:51–8.PubMedGoogle Scholar
  46. 46.
    Miller SP, Ramaswamy V, Michelson D, Barkovich AJ, Holshouser B, Wycliffe N, et al. Patterns of brain injury in term neonatal encephalopathy. J Pediatr. 2005;146:453–60.PubMedGoogle Scholar
  47. 47.
    Triulzi F, Baldoli C, Parazzini C. Neonatal mr imaging. Magn Reson Imaging Clin N Am. 2001;9:57–82, viii.PubMedGoogle Scholar
  48. 48.
    Alderliesten T, Nikkels PG, Benders MJ, de Vries LS, Groenendaal F. Antemortem cranial mri compared with postmortem histopathologic examination of the brain in term infants with neonatal encephalopathy following perinatal asphyxia. Arch Dis Child Fetal Neonatal Ed. 2013;98:F304–9.PubMedGoogle Scholar
  49. 49.
    Janzer RC, Friede RL. Hypotensive brain stem necrosis or cardiac arrest encephalopathy? Acta Neuropathol. 1980;50:53–6.PubMedGoogle Scholar
  50. 50.
    Dambska M, Laure-Kamionowska M, Liebhart M. Brainstem lesions in the course of chronic fetal asphyxia. Clin Neuropathol. 1987;6:110–5.PubMedGoogle Scholar
  51. 51.
    Jacques SM, Kupsky WJ, Giorgadze T, Qureshi F. Fetal central nervous system injury in third trimester stillbirth: a clinicopathologic study of 63 cases. Pediatr Dev Pathol. 2012;15:375–84.Google Scholar
  52. 52.
    Bell JE, Becher JC, Wyatt B, Keeling JW, McIntosh N. Brain damage and axonal injury in a scottish cohort of neonatal deaths. Brain J Neurol. 2005;128:1070–81.Google Scholar
  53. 53.
    Clancy RR, Sladky JT, Rorke LB. Hypoxic-ischemic spinal cord injury following perinatal asphyxia. Ann Neurol. 1989;25:185–9.PubMedGoogle Scholar
  54. 54.
    Govaert P. Prenatal stroke. Semin Fetal Neonatal Med. 2009;14:250–66.PubMedGoogle Scholar
  55. 55.
    Tietjen I, Bodell A, Apse K, Mendonza AM, Chang BS, Shaw GM, et al. Comprehensive emx2 genotyping of a large schizencephaly case series. Am J Med Genet A. 2007;143A:1313–6.PubMedGoogle Scholar
  56. 56.
    Tietjen I, Erdogan F, Currier S, Apse K, Chang BS, Hill RS, et al. Emx2-independent familial schizencephaly: clinical and genetic analyses. Am J Med Genet A. 2005;135:166–70.PubMedGoogle Scholar
  57. 57.
    Yoneda Y, Haginoya K, Kato M, Osaka H, Yokochi K, Arai H, et al. Phenotypic spectrum of col4a1 mutations: porencephaly to schizencephaly. Ann Neurol. 2013;73:48–57.PubMedGoogle Scholar
  58. 58.
    Hehr U, Pineda-Alvarez DE, Uyanik G, Hu P, Zhou N, Hehr A, et al. Heterozygous mutations in SIX3 and SHH are associated with schizencephaly and further expand the clinical spectrum of holoprosencephaly. Hum Genet. 2010;127:555–61.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Yoneda Y, Haginoya K, Arai H, Yamaoka S, Tsurusaki Y, Doi H, et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen α2 chain cause porencephaly. Am J Hum Genet. 2012;90:86–90.PubMedGoogle Scholar
  60. 60.
    Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB, et al. Novel mutations in three families confirm a major role of col4a1 in hereditary porencephaly. J Med Genet. 2006;43:490–5.PubMedGoogle Scholar
  61. 61.
    Cecchetto G, Milanese L, Giordano R, Viero A, Suma V, Manara R. Looking at the missing brain: hydranencephaly case series and literature review. Pediatr Neurol. 2013;48:152–8.PubMedGoogle Scholar
  62. 62.
    Chabrier S, Husson B, Dinomais M, Landrieu P, Nguyen The Tich S. New insights (and new interrogations) in perinatal arterial ischemic stroke. Thromb Res. 2011;127:13–22.PubMedGoogle Scholar
  63. 63.
    Lehman LL, Rivkin MJ. Perinatal arterial ischemic stroke: presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51:760–8.PubMedGoogle Scholar
  64. 64.
    Kenet G, Lutkhoff LK, Albisetti M, Bernard T, Bonduel M, Brandao L, et al. Impact of thrombophilia on risk of arterial ischemic stroke or cerebral sinovenous thrombosis in neonates and children: a systematic review and meta-analysis of observational studies. Circulation. 2010;121:1838–47.PubMedGoogle Scholar
  65. 65.
    Mineyko A, Kirton A. The black box of perinatal ischemic stroke pathogenesis. J Child Neurol. 2011;26:1154–62.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Harteman JC, Groenendaal F, Kwee A, Welsing PM, Benders MJ, de Vries LS. Risk factors for perinatal arterial ischaemic stroke in full-term infants: a case-control study. Arch Dis Child Fetal Neonatal Ed. 2012;97:F411–6.PubMedGoogle Scholar
  67. 67.
    Barmada MA, Moossy J, Shuman RM. Cerebral infarcts with arterial occlusion in neonates. Ann Neurol. 1979;6:495–502.PubMedGoogle Scholar
  68. 68.
    Heller C, Heinecke A, Junker R, Knofler R, Kosch A, Kurnik K, et al. Cerebral venous thrombosis in children: a multifactorial origin. Circulation. 2003;108:1362–7.PubMedGoogle Scholar
  69. 69.
    Wu YW, Hamrick SE, Miller SP, Haward MF, Lai MC, Callen PW, et al. Intraventricular hemorrhage in term neonates caused by sinovenous thrombosis. Ann Neurol. 2003;54:123–6.PubMedGoogle Scholar
  70. 70.
    Krasnokutsky MV. Cerebral venous thrombosis: a potential mimic of primary traumatic brain injury in infants. AJR. 2011;197:W503–7.PubMedGoogle Scholar
  71. 71.
    Dlamini N, Billinghurst L, Kirkham FJ. Cerebral venous sinus (sinovenous) thrombosis in children. Neurosurg Clin N Am. 2010;21:511–27.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Heibel M, Heber R, Bechinger D, Kornhuber HH. Early diagnosis of perinatal cerebral lesions in apparently normal full-term newborns by ultrasound of the brain. Neuroradiology. 1993;35:85–91.PubMedGoogle Scholar
  73. 73.
    Van Raay Y, Darteyre S, Di Rocco F, Goodden J, Papouin M, Brunelle F, et al. Neonatal ruptured intracranial aneurysms: case report and literature review. Child Nerv Syst. 2009;25:1025–33.Google Scholar
  74. 74.
    Tai YP, Chou IC, Yang MS, Lin HC, Chiu HY, Kuo HT, et al. Neonatal intracranial aneurysm rupture treated by endovascular management: a case report. Pediatr Neonatol. 2010;51:249–51.PubMedGoogle Scholar
  75. 75.
    Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. I: hemorrhagic lesions of neocortex. J Neuropathol Exp Neurol. 1996;55:758–73.PubMedGoogle Scholar
  76. 76.
    Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115:997–1003.PubMedGoogle Scholar
  77. 77.
    Sheth RD. Trends in incidence and severity of intraventricular hemorrhage. J Child Neurol. 1998;13:261–4.PubMedGoogle Scholar
  78. 78.
    Larroque B, Marret S, Ancel PY, Arnaud C, Marpeau L, Supernant K, et al. White matter damage and intraventricular hemorrhage in very preterm infants: the epipage study. J Pediatr. 2003;143:477–83.PubMedGoogle Scholar
  79. 79.
    Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron. 2011;70:674–86.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med. 2007;13:477–85.PubMedGoogle Scholar
  81. 81.
    Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Golden JA, Gilles FH, Rudelli R, Leviton A. Frequency of neuropathological abnormalities in very low birth weight infants. J Neuropathol Exp Neurol. 1997;56:472–8.PubMedGoogle Scholar
  83. 83.
    Guzzetta F, Shackelford GD, Volpe S, Perlman JM, Volpe JJ. Periventricular intraparenchymal echodensities in the premature newborn: critical determinant of neurologic outcome. Pediatrics. 1986;78:995–1006.PubMedGoogle Scholar
  84. 84.
    Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.PubMedGoogle Scholar
  85. 85.
    Elchalal U, Yagel S, Gomori JM, Porat S, Beni-Adani L, Yanai N, et al. Fetal intracranial hemorrhage (fetal stroke): does grade matter? Ultrasound Obstet Gynecol. 2005;26:233–43.PubMedGoogle Scholar
  86. 86.
    Reeder JD, Kaude JV, Setzer ES. Choroid plexus hemorrhage in premature neonates: recognition by sonography. AJNR 1982;3:619–22.Google Scholar
  87. 87.
    Martin R, Roessmann U, Fanaroff A. Massive intracerebellar hemorrhage in low-birth-weight infants. J Pediatr. 1976;89:290–3.PubMedGoogle Scholar
  88. 88.
    Flodmark O, Becker LE, Harwood-Nash DC, Fitzhardinge PM, Fitz CR, Chuang SH. Correlation between computed tomography and autopsy in premature and full-term neonates that have suffered perinatal asphyxia. Radiology. 1980;137:93–103.PubMedGoogle Scholar
  89. 89.
    Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD, Moore M, et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics. 2005;116:717–24.PubMedGoogle Scholar
  90. 90.
    Goldenberg RL, Thompson C. The infectious origins of stillbirth. Am J Obstet Gynecol. 2003;189:861–73.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Yakoob MY, Lawn JE, Darmstadt GL, Bhutta ZA. Stillbirths: epidemiology, evidence, and priorities for action. Semin Perinatol. 2010;34:387–94.PubMedGoogle Scholar
  92. 92.
    Williams EJ, Embleton ND, Clark JE, Bythell M, Ward Platt MP, Berrington JE. Viral infections: contributions to late fetal death, stillbirth, and infant death. J Pediatr. 2013;163:424–8.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Stagno S, Reynolds DW, Huang ES, Thames SD, Smith RJ, Alford CA. Congenital cytomegalovirus infection. N Engl J Med. 1977;296:1254–8.PubMedGoogle Scholar
  94. 94.
    Teissier N, Fallet-Bianco C, Delezoide AL, Laquerriere A, Marcorelles P, Khung-Savatovsky S, et al. Cytomegalovirus-induced brain malformations in fetuses. J Neuropathol Exp Neurol. 2014;73:143–58.PubMedGoogle Scholar
  95. 95.
    Brown ZA, Selke S, Zeh J, Kopelman J, Maslow A, Ashley RL, et al. The acquisition of herpes simplex virus during pregnancy. N Engl J Med. 1997;337:509–15.PubMedGoogle Scholar
  96. 96.
    Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy: current concepts of prevention, diagnosis and therapy. Part 1: herpes simplex virus infections. Med Microbiol Immunol. 2007;196:89–94.PubMedGoogle Scholar
  97. 97.
    Reeves WC, Corey L, Adams HG, Vontver LA, Holmes KK. Risk of recurrence after first episodes of genital herpes. Relation to hsv type and antibody response. N Engl J Med. 1981;305:315–9.PubMedGoogle Scholar
  98. 98.
    Rudnick CM, Hoekzema GS. Neonatal herpes simplex virus infections. Am Fam Physician. 2002;65:1138–42.PubMedGoogle Scholar
  99. 99.
    Schutz PW, Fauth CT, Al-Rawahi GN, Pugash D, White VA, Stockler S, et al. Granulomatous herpes simplex encephalitis in an infant with multicystic encephalopathy: a distinct clinicopathologic entity? Pediatr Neurol. 2014;50:392–6.PubMedGoogle Scholar
  100. 100.
    Suh YL, Kim H, Chi JG, Byun HR, Lee K. Disseminated neonatal herpes simplex virus infection with necrotizing encephalitis–an autopsy case. J Korean Med Sci. 1987;2:123–7.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Baumann RJ, Walsh JW, Gilmore RL, Lee C, Wong P, Wilson HD, et al. Brain biopsy in cases of neonatal herpes simplex encephalitis. Neurosurgery. 1985;16:619–24.PubMedGoogle Scholar
  102. 102.
    Pelligra G, Lynch N, Miller SP, Sargent MA, Osiovich H. Brainstem involvement in neonatal herpes simplex virus type 2 encephalitis. Pediatrics. 2007;120:e442–6.PubMedGoogle Scholar
  103. 103.
    McGrath L, Woods M, Lee L, Conrad D. Acute retinal necrosis (arn) in the context of neonatal hsv-2 exposure and subconjunctival dexamethasone: case report and literature review. Digit J Ophthalmol. 2013;19:28–32.Google Scholar
  104. 104.
    Nicoll JA, Love S, Burton PA, Berry PJ. Autopsy findings in two cases of neonatal herpes simplex virus infection: detection of virus by immunohistochemistry, in situ hybridization and the polymerase chain reaction. Histopathology. 1994;24:257–64.PubMedGoogle Scholar
  105. 105.
    Whitley R. Neonatal herpes simplex virus infection. Curr Opin Infect Dis. 2004;17:243–6.PubMedGoogle Scholar
  106. 106.
    Lindegren ML, Steinberg S, Byers Jr RH. Epidemiology of hiv/aids in children. Pediatr Clin North Am. 2000;47:1–20, v.PubMedGoogle Scholar
  107. 107.
    Anonymous. Aids epidemic update. Geneva: UNAIDS/WHO.Google Scholar
  108. 108.
    Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P, Dabis F, et al. Mortality of infected and uninfected infants born to hiv-infected mothers in Africa: a pooled analysis. Lancet. 2004;364:1236–43.Google Scholar
  109. 109.
    Kozlowski PB, Brudkowska J, Kraszpulski M, Sersen EA, Wrzolek MA, Anzil AP, et al. Microencephaly in children congenitally infected with human immunodeficiency virus–a gross-anatomical morphometric study. Acta Neuropathol. 1997;93:136–45.PubMedGoogle Scholar
  110. 110.
    Mintz M. Clinical features and treatment interventions for human immunodeficiency virus-associated neurologic disease in children. Semin Neurol. 1999;19:165–76.PubMedGoogle Scholar
  111. 111.
    Kure K, Llena JF, Lyman WD, Soeiro R, Weidenheim KM, Hirano A, et al. Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol. 1991;22:700–10.PubMedGoogle Scholar
  112. 112.
    Torgerson PR, Mastroiacovo P. The global burden of congenital toxoplasmosis: a systematic review. Bull World Health Organ. 2013;91:501–8.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Kieffer F, Wallon M. Congenital toxoplasmosis. Handb Clin Neurol. 2013;112:1099–101.PubMedGoogle Scholar
  114. 114.
    Allain JP, Palmer CR, Pearson G. Epidemiological study of latent and recent infection by toxoplasma gondii in pregnant women from a regional population in the U.K. J Infect. 1998;36:189–96.PubMedGoogle Scholar
  115. 115.
    Okike IO, Johnson AP, Henderson KL, Blackburn RM, Muller-Pebody B, Ladhani SN, et al. Incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United Kingdom and Republic of Ireland: prospective, enhanced, national population-based surveillance. Clin Infect Dis. 2014;59:e150–7.PubMedGoogle Scholar
  116. 116.
    Fernandez M, Moylett EH, Noyola DE, Baker CJ. Candidal meningitis in neonates: a 10-year review. Clin Infect Dis. 2000;31:458–63.PubMedGoogle Scholar
  117. 117.
    Bhutani VK, Zipursky A, Blencowe H, Khanna R, Sgro M, Ebbesen F, et al. Neonatal hyperbilirubinemia and rhesus disease of the newborn: incidence and impairment estimates for 2010 at regional and global levels. Pediatr Res. 2013;74:86–100.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Watchko JF, Tiribelli C. Bilirubin-induced neurologic damage–mechanisms and management approaches. N Engl J Med. 2013;369:2021–30.PubMedGoogle Scholar
  119. 119.
    Hussain K. Congenital hyperinsulinism. Semin Fetal Neonatal Med. 2005;10:369–76.PubMedGoogle Scholar
  120. 120.
    Barkovich AJ, Ali FA, Rowley HA, Bass N. Imaging patterns of neonatal hypoglycemia. AJNR. 1998;19:523–8.Google Scholar
  121. 121.
    Wong DS, Poskitt KJ, Chau V, Miller SP, Roland E, Hill A, et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. AJNR. 2013;34:1456–61.PubMedGoogle Scholar
  122. 122.
    Anderson JM, Milner RD, Strich SJ. Effects of neonatal hypoglycaemia on the nervous system: a pathological study. J Neurol Neurosurg Psychiatry. 1967;30:295–310.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Banker BQ. The neuropathological effects of anoxia and hypoglycemia in the newborn. Dev Med Child Neurol. 1967;9:544–50.PubMedGoogle Scholar
  124. 124.
    Larroche JC. Developmental pathology of the neonate. Amsterdam: Excerpta Medica; 1977.Google Scholar
  125. 125.
    Anonymous. American Academy of Pediatrics. Committee on substance abuse and committee on children with disabilities. Fetal alcohol syndrome and alcohol-related neurodevelopmental disorders. Pediatrics. 2000;106:358–61.Google Scholar
  126. 126.
    de la Monte SM, Kril JJ. Human alcohol-related neuropathology. Acta Neuropathol. 2014;127:71–90.PubMedGoogle Scholar
  127. 127.
    Roebuck TM, Mattson SN, Riley EP. A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res. 1998;22:339–44.PubMedGoogle Scholar
  128. 128.
    Heier LA, Carpanzano CR, Mast J, Brill PW, Winchester P, Deck MD. Maternal cocaine abuse: the spectrum of radiologic abnormalities in the neonatal CNS. AJNR. 1991;12:951–6.Google Scholar
  129. 129.
    Dominguez R, Aguirre Vila-Coro A, Slopis JM, Bohan TP. Brain and ocular abnormalities in infants with in utero exposure to cocaine and other street drugs. Am J Dis Child. 1991;145:688–95.PubMedGoogle Scholar
  130. 130.
    Raets MM, Dudink J, Ijsselstijn H, van Heijst AF, Lequin MH, Houmes RJ, et al. Brain injury associated with neonatal extracorporeal membrane oxygenation in the Netherlands: a nationwide evaluation spanning two decades. Pediatr Crit Care Med. 2013;14:884–92.PubMedGoogle Scholar

Copyright information

© Springer International Publishing 2015

Authors and Affiliations

  1. 1.Department of Academic Neuropathology, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburgh, MidlothianUK
  2. 2.Developmental Biology and Cancer Programme and Department of HistopathologyUCL Institute of Child Health and Great Ormond Street HospitalLondonUK

Personalised recommendations