Skip to main content

Perinatal Hematology

  • Chapter
  • 2213 Accesses

Abstract

The perinatal period is one of rapid physiological change and evolution, challenging the clinical practitioner to differentiate between normal variation and a pathologic state. Correct interpretation of hematological abnormalities is dependent on accounting for maternal and fetal influences, including maternal pathology, genetic predisposition, and pathologic maternal-fetal interaction. These hematological problems are almost universal in premature and sick neonates but can occur unexpectedly in otherwise healthy term babies. In either case, these diagnoses often require immediate management. Quantitative tests on peripheral blood and bone marrow aspirates/biopsy including morphological analysis require care in collection and processing to reduce artefact and variability; they require experience and expertise in interpretation as values and morphology are highly age dependent. In this chapter, we review some pathologic states that can present in neonates due to bleeding, toxin exposure, and maternal pathology during pregnancy. Additionally, we will discuss conditions that present following delivery, such as coagulopathies, cytopenias, and leukemias.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cross JC. Placental function in development and disease. Reprod Fertil Dev. 2006;18:71–6.

    CAS  PubMed  Google Scholar 

  2. West JR, Blake CA. Fetal alcohol syndrome: an assessment of the field. Exp Biol Med (Maywood). 2005;230:354–6.

    CAS  Google Scholar 

  3. Sharpe CR, Franco EL. Use of dipyrone during pregnancy and risk of Wilms’ tumor. Brazilian Wilms’ Tumor Study Group. Epidemiology. 1996;7:533–5.

    CAS  PubMed  Google Scholar 

  4. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res. 2001;61:2542–6.

    Google Scholar 

  5. Thompson JR, Gerald PF, Willoughby ML, Armstrong BK. Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet. 2001;358:1935–40.

    CAS  Google Scholar 

  6. Wardrop CA, Holland BM. The roles and vital importance of placental blood to the newborn infant. J Perinat Med. 1995;23:139–43.

    CAS  PubMed  Google Scholar 

  7. Holton ME. Unexpected anemia in a newborn. Tex Med. 1989;85:50–1.

    Google Scholar 

  8. Arcasoy MO, Gallagher PG. Hematologic disorders and nonimmune hydrops fetalis. Semin Perinatol. 1995;19:502–15.

    CAS  Google Scholar 

  9. Sebring ES, Polesky HF. Fetomaternal hemorrhage: incidence, risk factors, time of occurrence, and clinical effects. Transfusion. 1990;30:344–57.

    CAS  PubMed  Google Scholar 

  10. Biankin SA, Arbuckle SM, Graf NS. Autopsy findings in a series of five cases of fetomaternal haemorrhages. Pathology. 2003;35:319–24.

    PubMed  Google Scholar 

  11. Kleihauer E, Braun H, Betke K. Demonstration of fetal hemoglobin in erythrocytes of a blood smear. Klin Wochenschr. 1957;35:637–8.

    CAS  PubMed  Google Scholar 

  12. Kelsey P, Reilly JT, Chapman JF, Bain BJ, Bates SC, Knowles SM, et al. The estimation of fetomaternal haemorrhage. Transfus Med. 1999;9:87–92.

    Google Scholar 

  13. Muench MV, Baschat AA, Reddy UM, Mighty HE, Weiner CP, Scalea TM, et al. Kleihauer-betke testing is important in all cases of maternal trauma. J Trauma. 2004;57:1094–8.

    PubMed  Google Scholar 

  14. Pelikan DM, Mesker WE, Scherjon SA, Kanhai HH, Tanke HJ. Improvement of the Kleihauer-Betke test by automated detection of fetal erythrocytes in maternal blood. Cytometry B Clin Cytom. 2003;54:1–9.

    Google Scholar 

  15. Pelikan DM, Scherjon SA, Mesker WE, de Groot-Swings GM, Brouwer-Mandema GG, Tanke HJ, et al. Quantification of fetomaternal hemorrhage: a comparative study of the manual and automated microscopic Kleihauer-Betke tests and flow cytometry in clinical samples. Am J Obstet Gynecol. 2004;191:551–7.

    PubMed  Google Scholar 

  16. Nelson M. An overview of the use of flow cytometry in the analysis of mixed red cell populations. Pathology. 1999;31:191–8.

    CAS  PubMed  Google Scholar 

  17. Oyelese KO, Turner M, Lees C, Campbell S. Vasa previa: an avoidable obstetric tragedy. Obstet Gynecol Surv. 1999;54:138–45.

    CAS  PubMed  Google Scholar 

  18. Akhter MS, Savior JF, Akhter IA, Deacon JS. Fetal exsanguination associated with antepartum hemorrhage. Can Med Assoc J. 1978;118:651–2, 657.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cordero L, Franco A, Joy SD. Monochorionic monoamniotic twins: neonatal outcome. J Perinatol. 2006;26:170–5.

    CAS  PubMed  Google Scholar 

  20. Lim YK, Tan TY, Zuzarte R, Daniel ML, Yeo GS. Outcomes of twin-twin transfusion syndrome managed by a specialised twin clinic. Singapore Med J. 2005;46:401–6.

    CAS  PubMed  Google Scholar 

  21. Rodeck CH, Weisz B, Peebles DM, Jauniaux E. Hypothesis: the placental ‘steal’ phenomenon – a possible hazard of amnioreduction. Fetal Diagn Ther. 2006;21:302–6.

    PubMed  Google Scholar 

  22. Wenstrom KD, Tessen JA, Zlatnik FJ, Sipes SL. Frequency, distribution, and theoretical mechanisms of hematologic and weight discordance in monochorionic twins. Obstet Gynecol. 1992;80:257–61.

    CAS  Google Scholar 

  23. Cordero L, Franco A, Joy SD, O’Shaughnessy RW. Monochorionic diamniotic infants without twin-to-twin transfusion syndrome. J Perinatol. 2005;25:753–8.

    PubMed  Google Scholar 

  24. Blickstein I. The twin-twin transfusion syndrome. Obstet Gynecol. 1990;76:714–22.

    CAS  PubMed  Google Scholar 

  25. Lewi L, Van Schoubroeck D, Gratacos E, Witters I, Timmerman D, Deprest J. Monochorionic diamniotic twins: complications and management options. Curr Opin Obstet Gynecol. 2003;15:177–94.

    PubMed  Google Scholar 

  26. Duncan KR. Twin-to-twin transfusion: update on management options and outcomes. Curr Opin Obstet Gynecol. 2005;17:618–22.

    PubMed  Google Scholar 

  27. Akkermans J, Peeters SH, Klumper FJ, Middeldorp JM, Lopriore E, Oepkes D. Is the sequential laser technique for twin-to-twin transfusion syndrome truly superior to the standard selective technique? A meta-analysis. Fetal Diagn Ther. 2015;37:251–8.

    PubMed  Google Scholar 

  28. Yamamoto M, Ville Y. Recent findings on laser treatment of twin-to-twin transfusion syndrome. Curr Opin Obstet Gynecol. 2006;18:87–92.

    PubMed  Google Scholar 

  29. Lopriore E, Sueters M, Middeldorp JM, Oepkes D, Vandenbussche FP, Walther FJ. Neonatal outcome in twin-to-twin transfusion syndrome treated with fetoscopic laser occlusion of vascular anastomoses. J Pediatr. 2005;147:597–602.

    PubMed  Google Scholar 

  30. Roberts D, Neilson JP, Kilby MD, Gates S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev. 2014;1:CD002073.

    Google Scholar 

  31. Rossi AC, Vanderbilt D, Chmait RH. Neurodevelopmental outcomes after laser therapy for twin-twin transfusion syndrome: a systematic review and meta-analysis. Obstet Gynecol. 2011;118:1145–50.

    Google Scholar 

  32. Schmidt WA, Affleck JA, Jacobson SL. Fatal fetal hemorrhage and placental pathology. Report of three cases and a new setting. Placenta. 2005;26:419–31.

    CAS  PubMed  Google Scholar 

  33. Gebremariam A. Subgaleal haemorrhage: risk factors and neurological and developmental outcome in survivors. Ann Trop Paediatr. 1999;19:45–50.

    CAS  Google Scholar 

  34. Kilani RA, Wetmore J. Neonatal subgaleal hematoma: presentation and outcome–radiological findings and factors associated with mortality. Am J Perinatol. 2006;23:41–8.

    Google Scholar 

  35. Doumouchtsis SK, Arulkumaran S. Head injuries after instrumental vaginal deliveries. Curr Opin Obstet Gynecol. 2006;18:129–34.

    PubMed  Google Scholar 

  36. Lin JC, Strauss RG, Kulhavy JC, Johnson KJ, Zimmerman MB, Cress GA, et al. Phlebotomy overdraw in the neonatal intensive care nursery. Pediatrics. 2000;106:E19.

    CAS  PubMed  Google Scholar 

  37. Fayyad AM, Harrington KF. Prediction and prevention of preeclampsia and IUGR. Early Hum Dev. 2005;81:865–76.

    PubMed  Google Scholar 

  38. Duley L, Meher S, Abalos E. Management of pre-eclampsia. BMJ. 2006;332:463–8.

    PubMed  PubMed Central  Google Scholar 

  39. Tamakoshi K, Yatsuya H, Wada K, Matsushita K, Otsuka R, Yang PO, et al. Birth weight and adult hypertension: cross-sectional study in a Japanese workplace population. Circ J. 2006;70:262–7.

    PubMed  Google Scholar 

  40. Mugo M, Govindarajan G, Kurukulasuriya LR, Sowers JR, McFarlane SI. Hypertension in pregnancy. Curr Hypertens Rep. 2005;7:348–54.

    PubMed  Google Scholar 

  41. Reece EA, Leguizamon G, Homko C. Pregnancy performance and outcomes associated with diabetic nephropathy. Am J Perinatol. 1998;15:413–21.

    CAS  PubMed  Google Scholar 

  42. Maulik D. Fetal growth restriction and macrosomia: an apparently intriguing combination. J Matern Fetal Neonatal Med. 2003;13:145–6.

    PubMed  Google Scholar 

  43. Lampl M, Jeanty P. Exposure to maternal diabetes is associated with altered fetal growth patterns: a hypothesis regarding metabolic allocation to growth under hyperglycemic-hypoxemic conditions. Am J Hum Biol. 2004;16:237–63.

    PubMed  Google Scholar 

  44. Jaffe R. Identification of fetal growth abnormalities in diabetes mellitus. Semin Perinatol. 2002;26:190–5.

    PubMed  Google Scholar 

  45. Trevisan G, Ramos JG, Martins-Costa S, Barros EJ. Pregnancy in patients with chronic renal insufficiency at Hospital de Clínicas of Porto Alegre, Brazil. Ren Fail. 2004;26:29–34.

    PubMed  Google Scholar 

  46. Ashfaq M, Janjua MZ, Nawaz M. Effects of maternal smoking on placental morphology. J Ayub Med Coll Abbottabad. 2003;15:12–5.

    PubMed  Google Scholar 

  47. Vogt IC. Maternal smoking, intrauterine growth restriction, and placental apoptosis. Pediatr Dev Pathol. 2004;7:433–42.

    Google Scholar 

  48. Bada HS, Das A, Bauer CR, Shankaran S, Lester BM, Gard CC, et al. Low birth weight and preterm births: etiologic fraction attributable to prenatal drug exposure. J Perinatol. 2005;25:631–7.

    PubMed  Google Scholar 

  49. Zdravkovic T, Genbacev O, McMaster MT, Fisher SJ. The adverse effects of maternal smoking on the human placenta: a review. Placenta. 2005;26:S81–6.

    PubMed  Google Scholar 

  50. Watts T, Roberts I. Haematological abnormalities in the growth-restricted infant. Semin Neonatol. 1999;4:41–54.

    Google Scholar 

  51. Koenig JM, Christensen RD. Incidence, neutrophil kinetics, and natural history of neonatal neutropenia associated with maternal hypertension. N Engl J Med. 1989;321:557–62.

    CAS  PubMed  Google Scholar 

  52. Murray NA, Roberts IA. Circulating megakaryocytes and their progenitors in early thrombocytopenia in preterm neonates. Pediatr Res. 1996;40:112–9.

    CAS  PubMed  Google Scholar 

  53. Murray N. New concepts in the aetiology and management of neonatal thrombocytopenia. Semin Neonatol. 1999;4:27–40.

    Google Scholar 

  54. Perrine SP, Greene MF, Lee PD, Cohen RA, Faller DV. Insulin stimulates cord blood erythroid progenitor growth: evidence for an aetiological role in neonatal polycythaemia. Br J Haematol. 1986;64:503–11.

    CAS  PubMed  Google Scholar 

  55. McIntosh N, Kempson C, Tyler RM. Blood counts in extremely low birthweight infants. Arch Dis Child. 1988;63:74–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Christensen RD, Liechty KW, Koenig JM, Schibler KR, Ohls RK. Administration of erythropoietin to newborn rats results in diminished neutrophil production. Blood. 1991;78:1241–6.

    CAS  PubMed  Google Scholar 

  57. Christensen RD, Koenig JM, Viskochil DH, Rothstein G. Down-modulation of neutrophil production by erythropoietin in human hematopoietic clones. Blood. 1989;74:817–22.

    CAS  PubMed  Google Scholar 

  58. Koenig JM, Christensen RD. The mechanism responsible for diminished neutrophil production in neonates delivered of women with pregnancy-induced hypertension. Am J Obstet Gynecol. 1991;165:467–73.

    CAS  PubMed  Google Scholar 

  59. Chirico G, Ciardelli L, Cecchi P, De Amici M, Gasparoni A, Rondini G. Serum concentration of granulocyte colony stimulating factor in term and preterm infants. Eur J Pediatr. 1997;156:269–71.

    CAS  PubMed  Google Scholar 

  60. Rondini G, Chirico G. Hematopoietic growth factor levels in term and preterm infants. Curr Opin Hematol. 1999;6:192–7.

    CAS  PubMed  Google Scholar 

  61. Paul D, Leef K, Taylor S, McKenzie S. Thrombopoietin in preterm infants: gestational age-dependent response. J Pediatr Hematol Oncol. 2002;24:304–9.

    PubMed  Google Scholar 

  62. Murray NA, Watts TL, Roberts IA. Endogenous thrombopoietin levels and effect of recombinant human thrombopoietin on megakaryocyte precursors in term and preterm babies. Pediatr Res. 1998;43:148–51.

    CAS  PubMed  Google Scholar 

  63. Watts T, Murray N, Roberts I. Thrombopoietin has a primary role in the regulation of platelet production in preterm babies. Pediatr Res. 1999;46:28–32.

    CAS  PubMed  Google Scholar 

  64. Tenovuo A. Neonatal complications in small-for-gestational age neonates. J Perinat Med. 1988;16:197–203.

    CAS  PubMed  Google Scholar 

  65. Merchant RH, Phadke SD, Sakhalkar VS, Agashe VS, Puniyani RR. Hematocrit and whole blood viscosity in newborns: analysis of 100 cases. Indian Pediatr. 1992;29:555–61.

    CAS  PubMed  Google Scholar 

  66. Werner E. Neonatal polycythaemia and hyperviscosity. Clin Perinatol. 1995;22:693–710.

    CAS  PubMed  Google Scholar 

  67. Wong W, Fok TF, Lee CH, Ng PC, So KW, Ou Y, et al. Randomised controlled trial: comparison of colloid or crystalloid for partial exchange transfusion for treatment of neonatal polycythaemia. Arch Dis Child Fetal Neonatal Ed. 1997;77:F115–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Carr R, Modi N, Dore C. G-csf and gm-csf for treating or preventing neonatal infections. Cochrane Database Syst Rev. 2003;(3):CD003066.

    Google Scholar 

  69. Sola-Visner M, Saxonhouse MA, Brown RE. Neonatal thrombocytopenia: what we do and don’t know. Early Hum Dev. 2008;84:499–506.

    PubMed  Google Scholar 

  70. Blanchette VS, Kuhne T, Hume H, Hellmann J. Platelet transfusion therapy in newborn infants. Transfus Med Rev. 1995;9:215–30.

    CAS  PubMed  Google Scholar 

  71. Andrew M, Vegh P, Caco C, Kirpalani H, Jefferies A, Ohlsson A, et al. A randomized, controlled trial of platelet transfusions in thrombocytopenic premature infants. J Pediatr. 1993;123:285–91.

    CAS  PubMed  Google Scholar 

  72. Andrew M, Castle V, Saigal S, Carter C, Kelton JG. Clinical impact of neonatal thrombocytopenia. J Pediatr. 1987;110:457–64.

    CAS  PubMed  Google Scholar 

  73. Fantoli U. Anti-D gamma globulins in the prevention of hemolytic disease of the newborn. Recenti Prog Med. 1966;40:371–2.

    Google Scholar 

  74. Clarke CA. Prevention of Rh-haemolytic disease. Br Med J. 1967;4:7–12.

    Google Scholar 

  75. Anonymous. Royal College of Physicians of Edinburgh/Royal College of Obstetricians and Gynaecologists Consensus Conference on anti-D prophylaxis, 7-8 April 1997. Br J Haematol. 1997;97:927–8.

    Google Scholar 

  76. Crowther CA, Keirse MJ. Anti-D administration in pregnancy for preventing rhesus alloimmunisation. Cochrane Database Syst Rev. 2000;(2):CD000020.

    Google Scholar 

  77. van Dijk BA, Dooren MC, Overbeeke MA. Red cell antibodies in pregnancy: there is no ‘critical titre’. Transfus Med. 1995;5:199–202.

    PubMed  Google Scholar 

  78. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364:1343–60.

    PubMed  Google Scholar 

  79. Scaradavou A, Inglis S, Peterson P, Dunne J, Chervenak F, Bussel J. Suppression of erythropoiesis by intrauterine transfusions in hemolytic disease of the newborn: use of erythropoietin to treat the late anemia. J Pediatr. 1993;123:279–84.

    CAS  PubMed  Google Scholar 

  80. Mayne KM, Bowell PJ, Pratt GA. The significance of anti-kell sensitization in pregnancy. Clin Lab Haematol. 1990;12:379–85.

    CAS  PubMed  Google Scholar 

  81. Vaughan JI, Warwick R, Letsky E, Nicolini U, Rodeck CH, Fisk NM. Erythropoietic suppression in fetal anemia because of kell alloimmunization. Am J Obstet Gynecol. 1994;171:247–52.

    CAS  PubMed  Google Scholar 

  82. Mari G, Deter RL, Carpenter RL, Rahman F, Zimmerman R, Moise Jr KJ, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med. 2000;342:9–14.

    CAS  PubMed  Google Scholar 

  83. Kaplan C, Morel-Kopp MC, Clemenceau S, Daffos F, Forestier F, Tchernia G. Fetal and neonatal alloimmune thrombocytopenia: current trends in diagnosis and therapy. Transfus Med. 1992;2:265–71.

    CAS  PubMed  Google Scholar 

  84. Uhrynowska M, Niznikowska-Marks M, Zupanska B. Neonatal and maternal thrombocytopenia: incidence and immune background. Eur J Haematol. 2000;64:42–6.

    CAS  PubMed  Google Scholar 

  85. Turner ML, Bessos H, Fagge T, Harkness M, Rentoul F, Seymour J, et al. Prospective epidemiologic study of the outcome and cost-effectiveness of antenatal screening to detect neonatal alloimmune thrombocytopenia due to anti-HPA-1a. Transfusion. 2005;45:1945–56.

    CAS  PubMed  Google Scholar 

  86. Bessos H, Seghatchian J. What’s happening? The expanding role of apheresis platelet support in neonatal alloimmune thrombocytopenia: current status and future trends. Transfus Apher Sci. 2005;33:191–7.

    PubMed  Google Scholar 

  87. Campbell-Lee SA, DeSantis-Parsons D, Shirey RS, Kickler TS. Neonatal alloimmune thrombocytopenia due to anti-HPA-5b (Bra). Immunohematology. 2003;19:127–31.

    Google Scholar 

  88. Han KS, Song EY, Park MH. Neonatal alloimmune thrombocytopenia due to HLA antibodies. Int J Hematol. 2002;76:361–3.

    PubMed  Google Scholar 

  89. Ertel K, Al-Tawil M, Santoso S, Kroll H. Relevance of the HPA-15 (Gov) polymorphism on CD109 in alloimmune thrombocytopenic syndromes. Transfusion. 2005;45:366–73.

    CAS  PubMed  Google Scholar 

  90. Panzer S, Auerbach L, Cechova E, Fischer G, Holensteiner A, Kitl EM, et al. Maternal alloimmunization against fetal platelet antigens: a prospective study. Br J Haematol. 1995;90:655–60.

    CAS  PubMed  Google Scholar 

  91. Mandelbaum M, Koren D, Eichelberger B, Auerbach L, Panzer S. Frequencies of maternal platelet alloantibodies and autoantibodies in suspected fetal/neonatal alloimmune thrombocytopenia, with emphasis on human platelet antigen-15 alloimmunization. Vox Sang. 2005;89:39–43.

    CAS  PubMed  Google Scholar 

  92. Thude H, Schorner U, Helfricht C, Loth M, Maak B, Barz D. Neonatal alloimmune thrombocytopenia caused by human leucocyte antigen-B27 antibody. Transfus Med. 2006;16:143–9.

    CAS  PubMed  Google Scholar 

  93. Grainger JD, Morrell G, Yates J, Deleacy D. Neonatal alloimmune thrombocytopenia with significant HLA antibodies. Arch Dis Child Fetal Neonatal Ed. 2002;86:F200–1.

    Google Scholar 

  94. Johnson JA, Ryan G, al-Musa A, Farkas S, Blanchette VS. Prenatal diagnosis and management of neonatal alloimmune thrombocytopenia. Semin Perinatol. 1997;21:45–52.

    CAS  PubMed  Google Scholar 

  95. Sukati H, Bessos H, Barker RN, Urbaniak SJ. Characterization of the alloreactive helper t-cell response to the platelet membrane glycoprotein IIIa (integrin-beta3) in human platelet antigen-1a alloimmunized human platelet antigen-1b1b women. Transfusion. 2005;45:1165–77.

    CAS  PubMed  Google Scholar 

  96. Bessos H, Perez S, Armstrong-Fisher S, Urbaniak S, Turner M. The development of a quantitative elisa for antibodies against human platelet antigen type 1a. Transfusion. 2003;43:350–6.

    CAS  PubMed  Google Scholar 

  97. Beadling WV, Herman JH, Stuart MJ, Keashen-Schnell M, Miller JL. Fetal bleeding in neonatal alloimmune thrombocytopenia mediated by anti-PlAl is not associated with inhibition of fibrinogen binding to platelet GPIIb/IIIa. Am J Clin Pathol. 1995;103:636–41.

    CAS  PubMed  Google Scholar 

  98. Bessos H, Turner M, Urbaniak SJ. Is there a relationship between anti-HPA-1a concentration and severity of neonatal alloimmune thrombocytopenia? Immunohematology. 2005;21:102–9.

    Google Scholar 

  99. Kaplan C, Daffos F, Forestier F, Cox WL, Lyon-Caen D, Dupuy-Montbrun MC, et al. Management of alloimmune thrombocytopenia: antenatal diagnosis and in utero transfusion of maternal platelets. Blood. 1988;72:340–3.

    CAS  PubMed  Google Scholar 

  100. Jaegtvik S, Husebekk A, Aune B, Oian P, Dahl LB, Skogen B. Neonatal alloimmune thrombocytopenia due to anti-HPA-1a antibodies; the level of maternal antibodies predicts the severity of thrombocytopenia in the newborn. BJOG. 2000;107:691–4.

    CAS  Google Scholar 

  101. Williamson LM, Hackett G, Rennie J, Palmer CR, Maciver C, Hadfield R, et al. The natural history of fetomaternal alloimmunization to the platelet-specific antigen HPA-1a (PlA1, Zwa) as determined by antenatal screening. Blood. 1998;92:2280–7.

    Google Scholar 

  102. Lipitz S, Ryan G, Murphy MF, Robson SC, Haeusler MC, Metcalfe P, et al. Neonatal alloimmune thrombocytopenia due to anti-P1A1 (anti-HPA-1a): importance of paternal and fetal platelet typing for assessment of fetal risk. Prenat Diagn. 1992;12:955–8.

    CAS  PubMed  Google Scholar 

  103. McQuilten ZK, Wood EM, Savoia H, Cole S. A review of pathophysiology and current treatment for neonatal alloimmune thrombocytopenia (NAIT) and introducing the Australian NAIT registry. Aust N Z J Obstet Gynaecol. 2011;51:191–8.

    PubMed  Google Scholar 

  104. Anonymous. Guidelines for the investigation and management of idiopathic thrombocytopenic purpura in adults, children and in pregnancy. Br J Haematol. 2003;120:574–96.

    Google Scholar 

  105. Bussel JB, Druzin ML, Cines DB, Samuels P. Thrombocytopenia in pregnancy. Lancet. 1991;337:251.

    CAS  PubMed  Google Scholar 

  106. Burrows RF, Kelton JG. Fetal thrombocytopenia and its relation to maternal thrombocytopenia. N Engl J Med. 1993;329:1463–6.

    CAS  PubMed  Google Scholar 

  107. Fujimura K, Harada Y, Fujimoto T, Kuramoto A, Ikeda Y, Akatsuka J, et al. Nationwide study of idiopathic thrombocytopenic purpura in pregnant women and the clinical influence on neonates. Int J Hematol. 2002;75:426–33.

    PubMed  Google Scholar 

  108. Burrows RF, Kelton JG. Low fetal risks in pregnancies associated with idiopathic thrombocytopenic purpura. Am J Obstet Gynecol. 1990;163:1147–50.

    CAS  PubMed  Google Scholar 

  109. Burrows RF, Kelton JG. Thrombocytopenia during pregnancy. In: Greer I, Turpie A, Forbes C, editors. Haemostasis and thombosis in obstetrics and gynaecology. London: Chapman and Hall; 1992.

    Google Scholar 

  110. Burrows RF, Kelton JG. Alloimmune neonatal thrombocytopenia associated with incidental maternal thrombocytopenia. Am J Hematol. 1990;35:43–4.

    CAS  PubMed  Google Scholar 

  111. Rosenblatt DS, Whitehead VM. Cobalamin and folate deficiency: acquired and hereditary disorders in children. Semin Hematol. 1999;36:19–34.

    CAS  PubMed  Google Scholar 

  112. Hindmarsh PC, Geary MP, Rodeck CH, Jackson MR, Kingdom JC. Effect of early maternal iron stores on placental weight and structure. Lancet. 2000;356:719–23.

    CAS  PubMed  Google Scholar 

  113. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the full-term infant. Blood. 1987;70:165–72.

    Google Scholar 

  114. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Newall F, Chan A, et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost. 2006;95:362–72.

    CAS  PubMed  Google Scholar 

  115. Williams MD, Chalmers EA, Gibson BE. The investigation and management of neonatal haemostasis and thrombosis. Br J Haematol. 2002;119:295–309.

    PubMed  Google Scholar 

  116. Shearer MJ. Vitamin k. Lancet. 1995;345:229–34.

    CAS  Google Scholar 

  117. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, et al. Development of the human coagulation system in the healthy premature infant. Blood. 1988;72:1651–7.

    Google Scholar 

  118. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr. 2003;91:48–55.

    CAS  Google Scholar 

  119. Anonymous. Controversies concerning Vitamin K and the newborn. American Academy of Pediatrics Committee on Fetus and Newborn. Pediatrics. 2003;112:191–92.

    Google Scholar 

  120. Department of Health. Vitamin K for newborn babies. London: HMSO; 1998.

    Google Scholar 

  121. Delgado-Escueta AV, Janz D. Consensus guidelines: preconception counseling, management, and care of the pregnant woman with epilepsy. Neurology. 1992;42:149–60.

    CAS  PubMed  Google Scholar 

  122. Wiedmeier SE, Henry E, Sola-Visner MC, Christensen RD. Platelet reference ranges for neonates, defined using data from over 47,000 patients in a multihospital healthcare system. J Perinatol. 2009;29:130–6.

    CAS  PubMed  Google Scholar 

  123. George D, Bussel JB. Neonatal thrombocytopenia. Semin Thromb Hemost. 1995;21:276–93.

    CAS  PubMed  Google Scholar 

  124. Enjolras O, Riche M, Merland J, Escande J. Management of alarming hemangiomas in infancy. A review of 25 cases. Pediatrics. 1990;85:491–8.

    CAS  PubMed  Google Scholar 

  125. Ververidis M, Kiely EM, Spitz L, Drake DP, Eaton S, Pierro A. The clinical significance of thrombocytopenia in neonates with necrotizing enterocolitis. J Pediatr Surg. 2001;36:799–803.

    CAS  PubMed  Google Scholar 

  126. Nowak-Gottl U, von Kries R, Gobel U. Neonatal symptomatic thromboembolism in Germany: two year survey. Arch Dis Child Fetal Neonatal Ed. 1997;76:F163–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmidt B, Andrew M. Neonatal thrombosis: report of a prospective Canadian and international registry. Pediatrics. 1995;96:939–43.

    Google Scholar 

  128. Kadir RA. Women and inherited bleeding disorders: pregnancy and delivery. Semin Hematol. 1999;36:28–35.

    CAS  PubMed  Google Scholar 

  129. Thomas A, Chalmers E. The neonate with hemophilia. In: Lee CA, Berntorp EE, Hoots WK, editors. Textbook of hemophilia. 1st ed. Oxford: Blackwells Publishing Ltd; 2005. p. 125–30.

    Google Scholar 

  130. Kulkarni R, Lusher J. Intracranial and extracranial haemorrhages in newborns with haemophilia: a review of the literature. J Pediatr Hematol Oncol. 1999;21:289–95.

    CAS  PubMed  Google Scholar 

  131. Buchanan G. Factor concentrate prophylaxis for neonates with hemophilia. J Pediatr Hematol Oncol. 1999;21:254–5.

    CAS  PubMed  Google Scholar 

  132. Lorenzo J, Lopez A, Aznar J. Incidence of inhibitors in severe haemophilia: the importance of patient age. Br J Haematol. 2001;113:600–3.

    CAS  PubMed  Google Scholar 

  133. Van der Bom J, M-B EP, Fischer K. Age at first treatment and immune tolerance to factor viii in severe haemophilia. Blood Coagul Fibrinolysis. 2003;89:475–9.

    Google Scholar 

  134. Steiner LA, Gallagher PG. Erythrocyte disorders in the perinatal period. Semin Perinatol. 2007;31:254–61.

    PubMed  PubMed Central  Google Scholar 

  135. Delaunay J. The molecular basis of hereditary red cell membrane disorders. Blood Rev. 2007;21:1–20.

    CAS  PubMed  Google Scholar 

  136. Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122:2162–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Foucar K. Anemias. In: Foucar K, Reichard KK, Czuchlewski D, editors. Bone marrow pathology. 3rd ed. Chicago: ASCP Press; 2010. p. 93–129.

    Google Scholar 

  138. Bain BJ. Blood cells: a practical guide. 3rd ed. Oxford: Blackwell Science Ltd; 2002.

    Google Scholar 

  139. Hoffbrand AV, Pettit JE. Color atlas of clinical hematology. 3rd ed. London: Harcourt Publishers Limited; 2000.

    Google Scholar 

  140. Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB. Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis. 2011;6:26.

    PubMed  PubMed Central  Google Scholar 

  141. Czuchlewski D. Neutropenia and agranulocytosis. In: Foucar K, Reichard KK, Czuchlewski D, editors. Bone marrow pathology. 3rd ed. Chicago: ASCP Press; 2010. p. 207–29.

    Google Scholar 

  142. Welte K, Zeidler C. Severe congenital neutropenia. Hematol Oncol Clin North Am. 2009;23:307–20.

    PubMed  Google Scholar 

  143. Sera Y, Kawaguchi H, Nakamura K, Sato T, Habara M, Okada S, et al. A comparison of the defective granulopoiesis in childhood cyclic neutropenia and in severe congenital neutropenia. Haematologica. 2005;90:1032–41.

    CAS  PubMed  Google Scholar 

  144. Balduini CL, Savoia A. Genetics of familial forms of thrombocytopenia. Hum Genet. 2012;131:1821–32.

    CAS  PubMed  Google Scholar 

  145. Geddis AE. Inherited thrombocytopenias: an approach to diagnosis and management. Int J Lab Hematol. 2013;35:14–25.

    PubMed  Google Scholar 

  146. Reichard KK. Megakaryocytic/platelet disorder. In: Foucar K, Reichard KK, Czuchlewski D, editors. Bone marrow pathology. Chicago: ASCP Press; 2010. p. 231–51.

    Google Scholar 

  147. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, et al. Haploinsufficiency of cbfa2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999;23:166–75.

    CAS  PubMed  Google Scholar 

  148. Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia – a review. Br J Haematol. 2008;140:123–32.

    Google Scholar 

  149. Hasle H, Niemeyer CM, Chessells JM, Baumann I, Bennett JM, Kerndrup G, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia. 2003;17:277–82.

    CAS  PubMed  Google Scholar 

  150. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: IARC Press; 2008.

    Google Scholar 

  151. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Pasquet M, Bellanne-Chantelot C, Tavitian S, Prade N, Beaupain B, Larochelle O, et al. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood. 2013;121:822–9.

    PubMed  Google Scholar 

  153. Bresters D, Reus AC, Veerman AJ, van Wering ER, van der Does-van den Berg A, Kaspers GJ. Congenital leukaemia: the dutch experience and review of the literature. Br J Haematol. 2002;117:513–24.

    Google Scholar 

  154. Choi JK. Hematologic abnormalities in individuals with Down syndrome. In: Proytcheva M, editor. Diagnostic pediatric hematopathology. Cambridge: Cambridge University Press; 2011. p. 310–22.

    Google Scholar 

  155. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Kim Choi MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Choi, J.K., Estepp, J.H. (2015). Perinatal Hematology. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics