This paper studies timely dataflow, a model for data-parallel computing in which each communication event is associated with a virtual time. It defines and investigates the could-result-in relation which is central to this model, then the semantics of timely dataflow graphs.


Partial Order Outgoing Edge Internal Edge Local History Back Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abadi, M., Isard, M.: On the flow of data, information, and time. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 73–92. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Isard, M.: Timely rollback: Specification and verification. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 19–34. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  3. 3.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Abadi, M., McSherry, F., Murray, D.G., Rodeheffer, T.L.: Formal analysis of a distributed algorithm for tracking progress. In: Beyer, D., Boreale, M. (eds.) FMOODS/FORTE 2013. LNCS, vol. 7892, pp. 5–19. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Blelloch, G.E.: Programming parallel algorithms. Communications of the ACM 39(3), 85–97 (1996)CrossRefGoogle Scholar
  6. 6.
    Hildebrandt, T.T., Panangaden, P., Winskel, G.: A relational model of non-deterministic dataflow. Mathematical Structures in Computer Science 14(5), 613–649 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and Systems 7(3), 404–425 (1985)CrossRefMathSciNetGoogle Scholar
  8. 8.
    John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed pi-calculus with priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII. LNCS (LNBI), vol. 5945, pp. 13–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Jonsson, B.: A fully abstract trace model for dataflow and asynchronous networks. Distributed Computing 7(4), 197–212 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kahn, G.: The semantics of a simple language for parallel programming. In: IFIP Congress, pp. 471–475 (1974)Google Scholar
  11. 11.
    Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley (2002)Google Scholar
  12. 12.
    Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad: a timely dataflow system. In: ACM SIGOPS 24th Symposium on Operating Systems Principles, pp. 439–455 (2013)Google Scholar
  13. 13.
    Pratt, V.: Modeling concurrency with partial orders. International Journal of Parallel Programming 15(1), 33–71 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Selinger, P.: First-order axioms for asynchrony. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 376–390. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Versari, C., Busi, N., Gorrieri, R.: An expressiveness study of priority in process calculi. Mathematical Structures in Computer Science 19(6), 1161–1189 (2009)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  • Martín Abadi
    • 1
    • 2
  • Michael Isard
    • 3
  1. 1.GoogleMountain ViewUSA
  2. 2.University of CaliforniaSanta CruzUSA
  3. 3.Microsoft ResearchMountain ViewUSA

Personalised recommendations