Advertisement

Difference Bound Constraint Abstraction for Timed Automata Reachability Checking

  • Weifeng WangEmail author
  • Li Jiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9039)

Abstract

We consider the reachability problem for timed automata. One of the most well-known solutions for this problem is the zone-based search method. Max bound abstraction and LU-bound abstraction on zones have been proposed to reduce the state space for zone based search. These abstractions use bounds collected from the timed automata structure to compute an abstract state space. In this paper we propose a difference bound constraint abstraction for zones. In this abstraction, sets of difference bound constraints collected from the symbolic run are used to compute the abstract states. Based on this new abstraction scheme, we propose an algorithm for the reachability checking of timed automata. Experiment results are reported on several timed automata benchmarks.

Keywords

Model Check Negative Cycle Reachability Problem Time Automaton Predicate Abstraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
  2. 2.
    Alur, R., Dill, D.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Asarin, E., Bozga, M., Kerbrat, A., Maler, O., Pnueli, A., Rasse, A.: Data-structures for the verification of timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 346–360. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone based abstractions of timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 312–326. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Beyer, D.: Improvements in BDD-based reachability analysis of timed automata. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 318–343. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic abstraction refinement for timed automata. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 114–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL, pp. 58–70. ACM (2002)Google Scholar
  12. 12.
    Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approximations for efficient analysis of timed automata. In: FSTTCS 2011, pp. 78–89 (2011)Google Scholar
  13. 13.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 990–1005. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Lazy abstractions for timed automata. CoRR abs/1301.3127 (2013)Google Scholar
  15. 15.
    McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Wozna, B., Zbrzezny, A., Penczek, W.: Checking reachability properties for timed automata via sat. Fundam. Inf. 55(2), 223–241 (2003)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Yovine, S.: Model checking timed automata. In: Rozenberg, G., Vaandrager, F.W. (eds.) Lectures on Embedded Systems. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Computer ScienceInstitute of Software, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations