Skip to main content

Introduction and Theory

  • Chapter
  • First Online:
  • 361 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter aims to convey the underlying theoretical concepts and the current state of research in the field of turbulent multi-particle dispersion. Some of these concepts are well known in the turbulence community and are described in detail in popular textbooks. Wherever possible, however, I will rely on the excellent and historically important texts by Richardson, Kolmogorov and Batchelor in order to present these ideas. Section 2.1 describes the governing equations of a turbulent flow and explains the necessity of a statistical description. Section 2.2 focuses on the famous theory of Kolmogorov and the underlying picture of the turbulence energy cascade. In Sect. 2.3, different aspects of turbulent dispersion for two or more fluid particles are described and current theoretical and experimental findings are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The smallest turbulent scale is estimated from measurements in atmospheric clouds at an altitude of approx. 2000 m (Siebert et al. 2006). The atmospheric pressure at this height is about 65 kPa for a sea-surface temperature of 288 K and an average molecular mass of the atmosphere of 0.02897 kg/mole, leading to a mean free path of \(\lambda \approx {10^{-7}}\) m.

  2. 2.

    An eddy is to be understood as “a component of motion with a certain length scale, i.e. an arbitrary flow pattern characterized by size alone” (Batchelor 1950). It is not to be confused with a whirl as seen near a drain.

  3. 3.

    The concept of isotropic turbulence and its usefulness to compute exact relations had already been presented earlier in the important works of Taylor (1935) and Von Kármán and Howarth (1938).

  4. 4.

    It is known for many years that the scaling law in Eq. (2.14) is actually not exact for \(p\ne 3\) due to intermittency effects. For a longer discussion of this topic see e.g. Frisch (1995), Chap. 8.

  5. 5.

    One can also think of \(t_0\) as the eddy-turn-over time of an eddy of size \(R_0\). After one turn-over, the eddy looses its coherence and the velocities of two fluid particles belonging to the eddy become uncorrelated.

  6. 6.

    For an incompressible flow, it can be shown that the displacement probability of two particles obeys \(P(\mathbf {x}_1,\mathbf {x}_2, t| \mathbf {y}_1,\mathbf {y}_2,0) = P(\mathbf {y}_1,\mathbf {y}_2,0|\mathbf {x}_1,\mathbf {x}_2, t)\) (Lundgren 1981), which directly leads to \(P_r(\mathbf {R}, t|\mathbf {R}_0,0)=P_r(\mathbf {R}_0,0|\mathbf {R}, t)\).

  7. 7.

    Instead of the shape tensor, one can also define the dispersion tensor \(\mathbf {C}(t)=\mathrm {P}^T(t) \mathrm {P}(t) = \mathbf {W}(t)\, \text {diag}(\sigma _1^2, \sigma _2^2, \ldots , \sigma _{\text {min}(d,n-1)}^2) \mathbf {W}^T(t) \). It has the same eigenvalues as \(\mathbf {G}(t)\) and serves the same purpose (Hackl et al. 2011).

References

  • Argyris, J., Faust, G., Haase, M., Friedrich, R.: Die Erforschung des Chaos. Springer, New York (2010)

    MATH  Google Scholar 

  • Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., Hof, B.: The onset of turbulence in pipe flow. Science 333, 192–196 (2011)

    Article  ADS  Google Scholar 

  • Batchelor, G.: The application of the similarity theory of turbulence to atmospheric diffusion. Q. J. R. Meteorol. Soc. 76, 133–146 (1950)

    Article  ADS  Google Scholar 

  • Batchelor, G.: Diffusion in a field of homogeneous turbulence. Proc. Camb. Philos. Soc. 48, 345–362 (1952)

    Article  MathSciNet  ADS  Google Scholar 

  • Berg, J., Lüthi, B., Mann, J., Ott, S.: Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304 (2006)

    Article  ADS  Google Scholar 

  • Betchov, R.: An inequality concerning the production of vorticity in isotropic turbulence. J. Fluid Mech. 1, 497–504 (1956)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Biferale, L., Boffetta, G., Celani, A., Devenish, J., Lanotte, A.: Multiparticle dispersion in fully developed turbulence. Phys. Fluids 17, 111701 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Bragg, A.D., Ireland, P.J., Collins, L.R.: Forward and backward in time dispersion of fluid and inertial patricles in isotropic turbulence. arXiv:1403.5502v1 (2014)

  • Celani, A., Cencini, M., Mazzino, A., Vergassola, M.: Active and passive fields face to face. New J. Phys. 6, 72 (2004)

    Article  ADS  Google Scholar 

  • Chertkov, M., Pumir, A., Shraiman, B.: Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 2394–2410 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Corrsin, S.: Heat transfer in isotropic turbulence. J. Appl. Phys. 23, 113–118 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Durbin, P.: A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech. 100, 279–302 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Falkovich, G., Gawedzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Frisch, U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  • Frisch, U., Mazzino, A., Noullez, A., Vergassola, M.: Lagrangian method for multiple correlations in passive scalar advection. Phys. Fluids 11, 2178–2186 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hackl, J.F., Yeung, P.K., Sawford, B.L.: Multi-particle and tetrad statistics in numerical simulations of turbulent relative dispersion. Phys. Fluids 23, 065103 (2011)

    Article  ADS  Google Scholar 

  • Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299–303 (1941a)

    ADS  Google Scholar 

  • Kolmogorov, A.N.: Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941b)

    ADS  MATH  Google Scholar 

  • Kraichnan, R.: The closure problem of turbulence theory. Technical report, DTIC Document (1961)

    Google Scholar 

  • Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  ADS  MATH  Google Scholar 

  • Lundgren, T.: Turbulent pair dispersion and scalar diffusion. J. Fluid Mech. 111, 27–57 (1981)

    Article  ADS  MATH  Google Scholar 

  • Lüthi, B., Ott, S., Berg, J., Mann, J.: Lagrangian multi-particle statistics. J. Turbul. 8, 45 (2007)

    Article  Google Scholar 

  • Mann, J., Ott, S., Andersen, J.S.: Experimental study of relative, turbulent diffusion. Technical report. (Risø-R-1036(EN)) (1999)

    Google Scholar 

  • Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics—Mechanics of Turbulence, vol. 1, 2. Dover Publications, New York (2007)

    Google Scholar 

  • Navier, C.L.M.: Sur les lois du mouvement des fluids. Comptes Rendus des Seances de l’Academie des Sciences 6, 389–440 (1827)

    Google Scholar 

  • Obukhov, A.: Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR Ser. Geogr. Geofiz. 5, 453–466 (1941)

    Google Scholar 

  • Ottino, J.: The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  • Ouellette, N.T., Xu, H., Bourgoin, M., Bodenschatz, E.: An experimental study of turbulent relative dispersion models. New J. Phys. 8, 109 (2006)

    Article  ADS  Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  • Pumir, A., Shraiman, B., Chertkov, M.: Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett. 85, 5324–5327 (2000)

    Article  ADS  Google Scholar 

  • Pumir, A., Shraiman, B., Chertkov, M.: The Lagrangian view of energy transfer in turbulent flow. Europhys. Lett. 56, 379–385 (2001)

    Article  ADS  Google Scholar 

  • Pumir, A., Bodenschatz, E., Xu, H.: Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Phys. Fluids 25, 035101 (2013)

    Article  ADS  Google Scholar 

  • Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. A 174, 935–982 (1883)

    Article  MATH  Google Scholar 

  • Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. A 186, 123–164 (1895)

    Article  ADS  MATH  Google Scholar 

  • Richardson, L.F.: Weather Prediction by Numerical Process. Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  • Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709–737 (1926)

    Article  ADS  Google Scholar 

  • Salazar, J.P., Collins, L.R.: Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405–432 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Sawford, B.L.: Turbulent relative dispersion. Annu. Rev. Fluid Mech. 33, 289–317 (2001)

    Article  ADS  Google Scholar 

  • Sawford, B.L., Yeung, P.K., Borgas, M.S.: Comparison of backwards and forwards relative dispersion in turbulence. Phys. Fluids 17, 095109 (2005)

    Article  ADS  Google Scholar 

  • Siebert, H., Franke, H., Lehmann, K., Maser, R., Saw, E.W., Schell, D., Shaw, R.A., Wendisch, M.: Probing finescale dynamics and microphysics of clouds with helicopter-borne measurements. Bull. Am. Meteorol. Soc. 87, 1727–1738 (2006)

    Article  ADS  Google Scholar 

  • Stokes, G.G.: On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Camb. Philos. Soc. 8, 287–305 (1845)

    Google Scholar 

  • Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2, 196–212 (1922)

    Article  Google Scholar 

  • Taylor, G.I.: Statistical theory of turbulence. Proc. R. Soc. Lond. A 151, 421–444 (1935)

    Article  ADS  MATH  Google Scholar 

  • Thomson, D.J.: Dispersion of particle pairs and decay of scalar fields in isotropic turbulence. Phys. Fluids 15, 801–813 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  • Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375–404 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  • Von Kármán, T., Howarth, L.: On the statistical theory of isotropic turbulence. Proc. R. Soc. Lond. A 164, 192–215 (1938)

    Article  ADS  Google Scholar 

  • Xu, H., Ouellette, N.T., Bodenschatz, E.: Evolution of geometric structures in intense turbulence. New J. Phys. 10, 013012 (2008)

    Article  ADS  Google Scholar 

  • Xu, H., Pumir, A., Bodenschatz, E.: The pirouette effect in turbulent flows. Nat. Phys. 7, 709–712 (2011)

    Article  Google Scholar 

  • Yeung, P.K.: Lagrangian investigation of turbulence. Annu. Rev. Fluid Mech. 34, 115–142 (2002)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Jucha .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jucha, J. (2015). Introduction and Theory. In: Time-Symmetry Breaking in Turbulent Multi-Particle Dispersion. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19192-8_2

Download citation

Publish with us

Policies and ethics