Skip to main content

Three-Dimensional FPGAs: Configuration and CAD Development

  • Chapter
  • First Online:
Three-Dimensional Design Methodologies for Tree-based FPGA Architecture

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 350))

  • 1429 Accesses

Abstract

The primary focus of this chapter is to demonstrate a 3D integration scheme to partition and optimize the multilevel programmable interconnect network of Tree-based FPGA based on Butterfly-Fat-Tree network topology, where TSVs are incorporated in active layers of the 3D chip. This chapter describes the details of the architecture of 3D FPGAs and state-of-the-art 3D technology for Mesh-based FPGAs. To take advantage of 3D integrated circuits, it should be investigated how FPGA should be physically partitioned into different active layers. Proper physical partitioning has a great impact on the performance improvement of the system. This chapter discuss different partitioning schemes and design techniques and associated 3D CAD tools of 3D FPGAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.M. Trimberger, Field Programmable Gate Array Technology, Norwell (Kulwer, MA, 1994)

    Google Scholar 

  2. A. DeHon, Reconfigurable Architectures for General-Purpose Computing. Ph.D. dissertation, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1996

    Google Scholar 

  3. I. Kuon, J. Rose, Measuring the gap between FPGAs and ASICs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 26(2), 203–215 (2007), http://dx.doi.org/10.1109/TCAD.2006.884574 (IEEE Council on Electronic Design Automation)

  4. L. Shang, A.S. Kaaviani, K. Bathala, Dynamic power consumption in vertex-II FPGA family, in Proceeding of ACM/SIGDA International Conference on FPGAs, pp. 157–164 (2002)

    Google Scholar 

  5. E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3), 288–298 (2004)

    Google Scholar 

  6. A. Rahman, R. Reif, System level performance evaluation of three-dimensional integrated circuits. IEEE Trans. Very Large Scale (VLSI) Syst. 8, 671–678 (2000)

    Google Scholar 

  7. A. Rahman, H. Shi, Z. Li, D. Ibbotson, S. Ramaswami, in Design and Manufacturing Enablement for Three-Dimensional (3D) Integrated Circuits (ICs). CICC, pp. 1–8 (2012)

    Google Scholar 

  8. L. Madden, E. Wu, N. Kim, B. Banijamali, K. Abugharbieh, S. Ramalingam, X. Wu, Advancing high performance heterogeneous integration through die stacking, in ESSCIRC, pp. 18–24 (2012)

    Google Scholar 

  9. R. Chaware, K. Nagarajan, S. Ramalingam, Assembly and reliability challenges in 3D integration of 28nm FPGA die on a large high density 65nm passive interposer, in IEEE International Conference on ECTC, pp. 279–283 (2012)

    Google Scholar 

  10. K. Siozios, A. Bartzas, D. Soudris. Architecture level exploration of alternative schmes targeting 3D FPGAs: a software supported methodology. Int. J. Reconfig. Comput. 2008, 2008

    Google Scholar 

  11. C. Ababei, P. Maidee, K. Bazargan, Exploring potential benefits of 3D FPGA integration, in Field Programmable Logic and Application, vol. 3203 (Springer, Berlin, Germany, 2004), pp. 874–880

    Google Scholar 

  12. M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3D FPGA, in Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, Monterey, California, USA, pp. 113–122, 22–24 Feb 2006

    Google Scholar 

  13. S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, J. Plummer, Monolithic 3D integrated circuits, in International Symposium on VLSI Technology, Systems and Applications, 2007. VLSI-TSA 2007

    Google Scholar 

  14. P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain, V. Mazzocchi, D. Lafond, O. Thomas, O. Cueto, N. Bouzaida, D. Fleury, A. Amara, S. Deleonibus, O. Faynot, Advances in 3D CMOS sequential integration, in IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, Dec 2009

    Google Scholar 

  15. C. Liu, S.K. Lim, A Design tradeoff study with monolithic 3D integration, in IEEE ISQED, pp. 529–536 (2012)

    Google Scholar 

  16. M. Cao, T. Zhao, K.C. Swraswat, J.D. Plummer, A simpler EEPROM cell using polysilicon thin file transistors. IEEE Electron Device Lett. 15(8), 304–306 (1994)

    Article  Google Scholar 

  17. S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch. IEEE J. solid state circ. 40(1), 168–176 (2005)

    Article  Google Scholar 

  18. A. Rahman, S. Das, A. Chandrakasan, R. Reif, Wiring requirements and three-Dimensional integration of field programmable gate arrays, in SLIP ACM, March 2001

    Google Scholar 

  19. M.J. Alexander, P.J. Cohoon, J.L. Colflesh, J. Karro, G. Robins, Three-dimensional field-programmable gate arrays, in Proceedings of the Eighth Annual IEEE International ASIC Conference and Exhibit, Austin TX, pp. 253–256, Sept 1995

    Google Scholar 

  20. J.V. Campenhout, H.V. Marck, J. Depreitere, J. Dambre, Optoelectronic FPGAs. IEEE J. Sel. Top. Quantum Electron 5(2), 306–315 (1999)

    Article  Google Scholar 

  21. Miriam Leeser, Waleed M. Meleis, Mankuan M. Vai, Silviu Chiricescu, Xu Weidong, Paul M. Zavracky, Rothko: a three-dimensional FPGA. IEEE Des. Test 15(1), 16–23 (1998)

    Article  Google Scholar 

  22. Gaetano Borriello, Carl Ebeling, Scott A. Hauck, Steven Burns, The triptych FPGA architecture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 3(4), 491–501 (1995)

    Article  Google Scholar 

  23. S. Chiricescu, M. Leeser, M. Michael Vai, Design and analysis of a dynamically reconfigurable three-dimensional FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 9(1), 186–197 2001

    Google Scholar 

  24. O. Turkyilmaz, G. Cibrario, O. Rozeau, P. Batude, F. Clermidy, 3D FPGA using high-density interconnect monolithic integration, in IEEE Design, Automation and Test in Europe Conference and Exhibition (DATE), March 2014

    Google Scholar 

  25. Y.-S. Kwon, P. Lajevardi, A.P. Chandrakasan, F. Honore, D.E. Troxel, A 3-D FPGA wire resource prediction model validated using a 3-D placement and routing tool, in Proceedings of the 2005 International Workshop on System Level Interconnect Prediction, San Francisco, California, USA, 02–03 April 2005

    Google Scholar 

  26. Vertex-5, Xilinx Inc., Vertex-5: Multi-platform FPGA, http://www.xilinx.com/products/silicon_solutions/fpga/vertex/vertex5/

  27. C. Ababei, Y. Feng, B. Goplen, H. Mogal, T. Zhang, K. Bazargan, S. Sapatnekar, Placement and routing for 3D integrated circuits. IEEE Des. Test, 22(6), 520–531 2005

    Google Scholar 

  28. C. Ababei, H. Mogal, K. Bazargan, Three-dimensional place and route for FPGAs. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 25(6), 1132–1140 (2006)

    Article  Google Scholar 

  29. V. Betz, J. Rose, VPR: a new packing placement and routing tool for FPGA research. Int. Conf. Field Program. Logic Appl. 1997, 213–222 (1997)

    Article  Google Scholar 

  30. K. Siozios, Vasilis F. Pavlidis, D. Soudris. A novel framework for exploring 3-D FPGAs with heterogeneous interconnect fabric. ACM Trans. Reconfig. Technol. Syst. 5(1), March 2012

    Google Scholar 

  31. S. Joseph, E. Wilton, J. Rose, Z. Vranesic, Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded Memory. Ph.D. dissertation, Depatrment of Electrical and Computer Engineering, University of Toronto, Toronto, Ont., Canada, 1997

    Google Scholar 

  32. M.I. Masud, S. Joseph, E. Wilton, A New switch block for segmented FPGAs, in Proceedings of the 9th International Workshop on Field-Programmable Logic and Applications, pp. 274–281, 30 August–01 September 1999

    Google Scholar 

  33. G.M. Wu, M. Shyu, Y.W. Chang, Universal switch block from three-dimensional FPGA design, in Proceeding of ACM/SIGDA International Symposium on Field Programmable Gate Arrays, (1999)

    Google Scholar 

  34. J. Rose, S. Brown, Flexibility of interconnect structures for field programmable gate arrays. IEEE J. Solid State Circ. 26, 277–282 (1991)

    Google Scholar 

  35. S. Gupta, M. Hilbert, S. Hong, R. Patti, Techniques for Producing 3D ICs with High-Density Interconnect (Tezzaron Semiconductor Naperville, IL, 2005)

    Google Scholar 

  36. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box architecture and thermal issues. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16( 7), 882–893 (2008)

    Google Scholar 

  37. K. Namhoon, D. Wu, D. Kim, A. Rahman, P. Wu, Interposer design optimization for high frequency signal transmission in passive and active interposer using through silicon via (TSV), in IEEE Electronic Components and Technology Conference (ECTC), pp. 1160–1167 (2011)

    Google Scholar 

  38. Xilinx-7. 7 series FPGA overview (2013), www.xilinx.com

  39. Altera. stratix V device overview (2013), www.altera.com

  40. Xilinx stacked silicon interconnect technology delivers breakthrough FPGa capacity, bandwidth, and power efficiency (2012), www.xilinx.com

  41. A.H. Pereira, V. Betz, CAD and routing for interposer based multi-FPGA systems, in International Symposium on FPGAs, CA, USA, 2014

    Google Scholar 

  42. N. Selvakkumaran, G. Karypis, Multi-objective hypergraph-partitioning algorithm for cut and maximum subdomain-degree minimization. IEEE Trans. Comput. Aided Des. Integr. Circ. 25(3), 504–517 (2006)

    Article  Google Scholar 

  43. C.M. Fiduccia, R.M. Mattheyeses, A liner-time heuristic for improving network partitions. ACM, Des. Autom. Conf. 7, 175–181 (1982)

    Google Scholar 

  44. L. McMurchie, C. Ebeling, PathFinder: a negotiation based performance driven router for FPGAs. Int. Conf. Field Program. Gate Arrays FPGA 12(2), 291–301 (1995)

    Google Scholar 

  45. Z. Marrakchi, H. Mrabet, H. Mehrez, Hierarchical FPGA clustering to improve routability, in Ph.D. Research Conference in Microelectronics, PRIME, 2005

    Google Scholar 

  46. Z. Marrakchi, H. Mrabet, U. Farooq, H. Mehrez, FPGA Interconnect topologies exploration. Int. J. Reconfig. Comput. 2009, (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Pangracious .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pangracious, V., Marrakchi, Z., Mehrez, H. (2015). Three-Dimensional FPGAs: Configuration and CAD Development. In: Three-Dimensional Design Methodologies for Tree-based FPGA Architecture. Lecture Notes in Electrical Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-319-19174-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19174-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19173-7

  • Online ISBN: 978-3-319-19174-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics