Skip to main content

Candidates for the Third Generation: Medium Mn Steels

  • Chapter
Advanced High Strength Sheet Steels

Abstract

Medium (4–10 %) Mn steel is considered as one of the candidates that can meet requirements of steels of third generation. This chapter presents the main factors affecting the combination of tensile properties of med MN steels: parameters of annealing, amount and stability of austenite, and Mn content. Additional alloying/microalloying effects are considered. Due to critical role of stability of retained austenite, the influence of various parameters is discussed including effect of annealing time, carbon and Mn content, as well as effect of grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, and F. Kegel. 2012a. “Effect of Intercritical Annealing Time on Microstructure and Mechanical Behavior of Advanced Medium Mn Steels.” In Materials Science Forum, 706–709:2693–98.

    Google Scholar 

  • Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges. 2012b. “Evolution of Microstructure and Mechanical Properties of Medium Mn Steels during Double Annealing.” Materials Science and Engineering: A 542 (0): 31–39.

    Google Scholar 

  • Arlazarov, A., A. Hazzotte, O. Bouaziz, and et al. 2012c. “Characterization of Microstructure Formation and Mechanical Behavior of an Advanced Medium Mn Steel.” Material Science and Technology, MS&T, 1124–31.

    Google Scholar 

  • Bleck, W., K. Hulka, and K. Papamentellous. 1998. “Effect of Niobium on the Mechanical Properties of TRIP Steels.” Material Science Forum 284–286: 327–34.

    Article  Google Scholar 

  • Cao, W.Q., C. Wang, C.Y. Wang, J. Shi, and M.Q. Wang. 2012. “Microstructure and Mechanical Properties of the Third Generation Automobile Steels Fabricated by ART-Annealing.” Science China, 1–9.

    Google Scholar 

  • De Cooman, B.C., P.J. Gibbs, S. Lee, and D.K. Matlock. 2013. “Transmission Electron Microscopy Analysis of Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions 44A (6): 2563–72.

    Article  Google Scholar 

  • De Moor, E., S. Kang, J.G. Speer, and D.K. Matlock. 2014. “Manganese Diffusion in Third Generation Advanced High Strength Steels.” In, Key note lecture II. Prague.

    Google Scholar 

  • De Moor, E., D. Matlock, J. Speer, and M. Merwin. 2011. “Austenite Stabilization Through Manganese Enrichment.” Scripta Materialia 64: 185–88.

    Article  Google Scholar 

  • Furukawa, T. 1989. “Dependence of Strength-Ductility Characteristics of Thermal History in Low Carbon, 5 Wt.% Mn Steels.” Material Science and Technology 6 (5): 465–70.

    Article  Google Scholar 

  • Furukawa, T., H. Huang, and O. Matsamura. 1994. “Effect of Carbon Content on Mechanical Properties of 5%Mn Steels Exhibiting Transformation Induced Plasticity.” Material Science and Technology, MS&T, 964–69.

    Google Scholar 

  • Gibbs, P.J., E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock. 2011. “Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3691–3702.

    Google Scholar 

  • Han, J., and Y.-K. Lee. 2014. “The Effect of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels.” Acta Materialia 67: 354–61.

    Article  Google Scholar 

  • Huang, H., O. Matsumura, and T. Furukawa. 1994. “Retained Austenite in Low Carbon, Manganese Steel after Intercritical Heat Treatment.” Material Science and Engineering, A 10 (7): 621–26.

    Google Scholar 

  • Jun, H.J., and N. Fonstein. 2008. “Microstructure and Tensile Properties of TRIP-Aided CR Sheet Steels: TRIP-Dual and Q&P.” In, 155–61. Orlando, Florida.

    Google Scholar 

  • Jun, H.J., O. Yakubovsky, and N. Fonstein. 2010. “Effect of Initial Microstructure and Parameters of Annealing of 4% and 6.7% Steels on the Evolution of Microstructure and Mechanical Properties.” In . Houston, Texas.

    Google Scholar 

  • Jun, H.J., O. Yakubovsky, and N.M. Fonstein. 2011. “On Stability of Retained Austenite in Medium Mn TRIP Steels.” In The 1st International Conference on High Manganese Steels. Seoul, Korea.

    Google Scholar 

  • Koo, J.Y., and G. Thomas. 1977. “Design of Duplex Fe/X/0.1C Steels for Improved Mechanical Properties.” Metallurgical Transactions A 8 (3): 525–28.

    Article  Google Scholar 

  • Lee, S., and B.C. De Cooman. 2011. “On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel.” Metallurgical and Materials Transactions A 44 (11): 5018–24.

    Article  Google Scholar 

  • Lee, S., and B.C. De Cooman. 2014. “Tensile Behavior of Intercritically Annealed 10 Pct Mn Multi-Phase Steel.” Metallurgical and Materials Transactions A 45A (2): 709–16.

    Article  Google Scholar 

  • Lee, S.-J., S. Lee, and B.C. De Cooman. 2011a. “Mn Partitioning during the Intercritical Annealing of Ultrafine-Grained 6% Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 649–52.

    Article  Google Scholar 

  • Lee, S.-J., S. Lee, and B.C. De Cooman. 2011b. “Austenite Stability in Multi-Phase Ultrafine-Grained 6pct Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 225–28.

    Article  Google Scholar 

  • Lee, S., K. Lee, and B.C. DeCooman. 2008. “Ultra Fine Grained 6wt% Manganese TRIP Steel.” Materials Science Forum 654–656: 286–89.

    Google Scholar 

  • Lee, S., S.-J. Lee, and B.C. De Cooman. 2011c. “Work Hardening Behavior of Ultrafine-Grained Mn Transformation-Induced Plasticity Steel.” Acta Materialia 59: 7546–53.

    Article  Google Scholar 

  • Lee, S., S.-J. Lee, S. Santhosh Kumar, K. Lee, and B.C. De Cooman. 2011d. “Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3638–51.

    Google Scholar 

  • Matlock, D.K., and J.G. Speer. 2006. “Design Consideration for the next Generation of Advanced High Strength Sheet Steels.” In The 3rd International Conference on Advanced Structural Steels, 774–81. Gyeongju, Korea.

    Google Scholar 

  • Merwin, M.J. 2006. Method for Producing High Strength, High Ductility Manganese Steel Strip.

    Google Scholar 

  • ———. 2007. “Low-Carbon Manganese TRIP Steels.” In Materials Science Forum, 539–543:4327–32.

    Google Scholar 

  • ———. 2008. “Microstructure and Properties of Cold-Rolled and Annealed Lowcarbon Manganese TRIP Steels.” Iron & Steel Technology, 66–86.

    Google Scholar 

  • Miller, R.L. 1972. “Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels.” Metallurgical Transactions 3 (4): 905–12.

    Article  Google Scholar 

  • Morrison, W.B. 1966. “The Effect of Grain Size on Stress-Strain Relationship in Low Carbon Steels.” Trans of ASM 59: 224–46.

    Google Scholar 

  • Oh, C.-S., J. Kang, S.-J. Park, and S.-J. Kim. 2010. “Microstructure and Tensile Properties of Nb-Added High Manganese TRIP-Aided Steel Sheets.” In MS&T2010. Houston, TX.

    Google Scholar 

  • Olson, G.B., and M. Cohen. 1976. “A General Mechanism of Martensite Nucleation.” Metallurgical Transactions A 7A: 1897–1904.

    Google Scholar 

  • Shi, J., X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao. 2010. “Enhanced Work Hardening Behavior and Mechanical Properties in Ultrafine Grained Steels with Large Fractioned Metastable Austenite.” Scripta Materialia 63 (8): 815–18.

    Article  Google Scholar 

  • Suh, D.W., S.-J. Park, N.N. Han, and S.-J. Kim. 2010a. “Influence of Al on Microstructure and Mechanical Behavior of Cr Containing Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 41 (13): 3276–81.

    Article  Google Scholar 

  • Suh, D.-W., S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim. 2010b. “Influence of Al on the Microstructure Evolution and Mechanical Behavior of Low Carbon, Medium Manganese Transformation-Induced-Plasticity Steels.” Metallurgical and Materials Transactions A 41A: 397–408.

    Article  Google Scholar 

  • Sun, R., W. Xu, C. Wang, J. Shi, H. Dong, and W. Cao. 2012. “Work Hardening Behavior of Ultrafine Grained Duplex Medium Mn Steels Processed by ART-Annealing.” Steel Research International 83 (4): 316–21.

    Article  Google Scholar 

  • Tokizane, M., N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura. 1982. “Recrystallization and Formation of Austenite in Deformed Lath Martensite Structure of Low-Carbon Steels.” Metallurgical Transactions 13 A: 1379–88.

    Article  Google Scholar 

  • You, J.S. 2004. “Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels.” Korean Journal of Materials Research 14: 126–34.

    Article  Google Scholar 

  • Zhao, X., Y. Shen, L. Qiu, and X. Sun. 2014. “Effect of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9 Mn-0.14 Si-0.06Al-0.07C Steel.” Materials 7: 7891–7906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonstein, N. (2015). Candidates for the Third Generation: Medium Mn Steels. In: Advanced High Strength Sheet Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-19165-2_9

Download citation

Publish with us

Policies and ethics