Skip to main content

TRIP Steels

  • Chapter

Abstract

The phenomenon of Transformation-Induced Plasticity (TRIP effect) and metallurgical concept of low-alloyed TRIP steels are presented. Optimal heat treatment including roles of initial structure, annealing temperature, and parameters of isothermal bainite reaction is discussed. The relationship between microstructure and mechanical properties of TRIP steels including the strength, ductility, strain hardening, and baking hardenability is considered focusing on the importance of austenite stability, minimizing fresh martensite, and microstructure refinement. Consideration of various effects of alloying elements separate the role of ferrite-stabilizing elements preventing carbide formation and hence facilitating the enrichment of austenite by carbon and elements affecting austenite hardenability and kinetics of bainite reaction. Effects of microalloying elements on structure refinement and the balance of strength and ductility are presented. Fracture features of TRIP steels and in particular, high energy absorption, fatigue behavior, and resistance to hydrogen embrittlement are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barbe, L., L. Tosai-Martinez, and B.C. DeCooman. 2002. “Effect of Phosphorous on Tensile Properties of Cold Rolled and Intercritical Annealed TRIP-Aided Steel.” In TRIP_aided Ferrous Alloys. Gent.

    Google Scholar 

  • Bhadeshia, H.K.D.H. 1992. Bainite in Steels. Cambridge University Press.

    Google Scholar 

  • Bhattacharya, D., N. Fonstein, O. Girina, I. Gupta, and O. Yakubovsky. 2003. “A Family of 590 MPa Advanced High Strength Steels with Various Microstructures.” In 45th MWSP Conference, 173–86.

    Google Scholar 

  • Bleck, W., and S. Bruhl. 2008. “Bake-Hardening Effects in Advanced High Strength Steels.” In New Development on Metallurgy and Applications of High Strength Steels. Buenos Aires, Argentina.

    Google Scholar 

  • Bleck, W., A. Frehn, and J. Ohlert. 2001. “Niobium in Dual-Phase Steels and TRIP Steels.” In , 727–52. Orlando.

    Google Scholar 

  • Chatterjee, S., and H.K.D.H. Bhadeshia. 2006. “TRIP-Assisted Steels: Cracking of High-Carbon Martensite.” Material Science and Technology 22 (6): 646–649.

    Google Scholar 

  • Chen, H., H. Era, and M. Shimizu. 1989. “Effect of Phosphorous on the Formation of Retained Austenite and Mechanical Properties in Si-Containing Low-Carbon Steel Sheet.” Metallurgical Transactions A 20A (3): 437–45.

    Article  Google Scholar 

  • Chiang, J., B. Lawrence, J.D. Boyd, and A.K. Pilkey. 2011. “Effect of Microstructure on Retained Austenite Stability and Work Hardening of TRIP Steels.” Material Science and Engineering A 528: 4516–21.

    Article  Google Scholar 

  • Cornette, D., T. Hourman, O. Hudin, J.P. Laurent, and A. Reynaert. 2001. “High Strength Steels for Automotive Safety Parts.” SAE International – 2001-01-0078.

    Google Scholar 

  • DeMeyer, M., K. De Wit, and B.C. De Cooman. 2000. “The Baking Hardening Behavior of Electro-Galvanized Cold Rolled CMnSi and CMnAlSi TRIP Steels.” Steel Research 71 (12): 511–18.

    Google Scholar 

  • DeMeyer, M., D. Vanderschueren, and B.C. DeCooman. 1999. “The Influence of Al on the Properties of Cold-Rolled C-Mn-Si TRIP Steels.” In 41st MSWP Conference, 265–76.

    Google Scholar 

  • DeMeyer, M., D. Vanderschueren, and B.C. De Cooman. 1999. “The Influence of the Substitution of Si by Al on the Properties of Cold rolled C-Mn-Si TRP Steels.” ISIJ International 39 (8): 813–32.

    Article  Google Scholar 

  • Ehrhardt, B., T. Gerber, and T.W. Schaumann. 2004. “Approaches to Microstructural Design of TRIP and TRI-Aided Cold-Rolled High Strength Steel.” In AHSSS, 39–50.

    Google Scholar 

  • Engl, B., L. Kessler, F-J. Lenze, and T.W. Schaumann. 1998. “Recent Experience with the Application of TRIP and Other Advanced Multiphase Steels.” In IBEC 98, 1–8.

    Google Scholar 

  • Evans, P., L. Crawford, and A. Jones. 1997. “High Strength C-Mn Steels for Automotive Applications.” Ironmaking Steelmaking 24 (5): 361.

    Google Scholar 

  • Faral, O., and T. Hourman. 1999. “Influence of Continuous Annealing Conditions on Dual-Phase and TRIP Steels for Automotive Application.” In 253–64.

    Google Scholar 

  • Furukawa, T., H. Morikawa, H. Takechi, and K. Koyama. 1979. “Process Factors for Highly Ductile Dual-Phase Steels.” In Structure and Properties of Dual-Phase Steels, 281–303. New Orleans, LA, USA

    Google Scholar 

  • Galan, J., L. Samek, P. Verleysen, and et al. 2012. “Advanced High Strength Steels for Automotive Industry.” Revista De Metalurgia 48 (2): 118–31.

    Google Scholar 

  • Gallagher, M., J.G. Speer, and D. Matlock. 2003. “Effect of Annealing Temperature on Austenite Decomposition in a Si-Alloyed TRIP Steel.” In Symposium of Austenite Formation and Decomposition, ISS, Chicago, IL, USA, 536–76.

    Google Scholar 

  • Gallagher, M., J.G. Speer, D.K. Matlock, and N. Fonstein. 2002. “Microstructure Development in TRIP-Stet Steels Containing Si, Al. P.” In 44 MSWP Conference, 153–72.

    Google Scholar 

  • Girault, E., A. Mertans, P. Jacques, Y. Houbaert, B. Verlinden, and J.-V.Y. Hambeeck. 2001. “Comparison of the Effect of Silicon and Aluminium on the Tensile Behavior of Multiphase TRIP-Assisted Steels.” Scripta Materialia 44: 885–92.

    Article  Google Scholar 

  • Godet, S., C. Georges, and P.J. Jacques. 2003. “On the Austenite Retention in Low Alloy Steels.” In TMS-ISS Conference, 523–36. Chicago.

    Google Scholar 

  • Gomez, M., C. Garcia, and A. DeArdo. 2007. “Microstructural Evolution during Continuous Galvanizing and Final Mechanical Properties of High Al-Low Si TRIP Steels.” In MS&T’07, 1–14.

    Google Scholar 

  • Gomez, M., C.I. Garcia, and A.J. DeArdo. 2010. “The Role of New Ferrite on Retained Austenite Stabilization in Al-TRIP Steels.” ISIJ International 50 (1): 139–46.

    Google Scholar 

  • Gomez, M., C.I. Garcia, D.M. Haezenbrouck, and A.J. DeArdo. 2009. “Design of Composition in (Al/Si) Alloyed TRIP Steels.” ISIJ International 49 (2): 302–11.

    Article  Google Scholar 

  • Haidemenopoulos, G., and A. Vasilakos. 1996. Steel Research 67 (11): 513–19.

    Google Scholar 

  • Hance, B.M., T.M. Link, and D.P. Hoydick. 2003. “Bake Hardenability of Multiphase High Strength Sheet Steels.” In 45 Conference MWSP, 195–206.

    Google Scholar 

  • Hashimoto, S., S. Ikeda, K.-I. Sugimoto, and S. Miyake. 2004. “Effect of Nb and Mo Additions to 0.2%C-1.5%Si-1.5%mn Steel on Mechanical Properties of Hot Rolled TRIP-Aided Steel Sheets.” ISIJ International 44 (9): 1590–98.

    Article  Google Scholar 

  • Heller, T., I. Heckelmann, T. Gerber, and T.W. Schaumann. 2005. “Potential of Niobium in Sheet Steels for the Automotive Industry.” In Recent Advances of Niobium Containing Materials in Europe, 21–28. Dusseldorf.

    Google Scholar 

  • Hojo, T., and et al. 2013. “Hydrogen Embrittlement Properties of Cr Added Ultra-Strength TRIP-Aided Martensitic Steel.” CAMP-ISIJ 26 (2): 624–27.

    Google Scholar 

  • Hojo, T., K.-I. Sugimoto, Y. Mulai, and S. Ikeda. 2008. “Effect of Aluminium on Delayed Fracture Properties of Ultra-High Strength Low-Alloy TRIP-Aided Steels.” ISIJ International 48 (6): 824–29.

    Article  Google Scholar 

  • Hosoya, Y. 1997. “Metallurgy of Continuously Annealed TRIP Steel Sheet.” In 148–54. Turkey.

    Google Scholar 

  • Hulka, K. 1999. “Relationship between Heat Treatment Conditions, Microstructure and Properties of Nioboum Microalloyed TRIP Steel.” In 41st MSWP Conference, XXXVII:67–77.

    Google Scholar 

  • Imai, N., N. Komatsubara, and K. Kunishige. 1995. “Effect of Alloying Element and Microstructure on Mechanical Properties of Low-Alloy TRIP-Steels.” CAMP-ISIJ 8: 572–75.

    Google Scholar 

  • Itami, A., M. Takahashi, and K. Ushioda. 1995. “Plastic Stability of Retained Austenite in the Cold-Rolled 0.14C-1.9Si-1.7Mn Sheet Steel.” ISIJ International 35 (9): 1121–27.

    Article  Google Scholar 

  • Iung, T., J. Drillet, A. Couturier, and C. Olier. 2002. “Detailed Study of the Transformation Mechanism in Ferrous TRIP Aided Steels.” In 31–37. Gent, Belgium.

    Google Scholar 

  • Jacques, P.J., X. Cornet, Ph. Harlet, J. Ladriere, and F. Delanney. 1998. “Enhancement of the Mechanical Properties of a Low-Carbon, Low-Si Steel by Formation of a Multiphased Microstructure Containing Retained Austenite.” Metallurgical and Materials Transactions A 29A (9): 2383–93.

    Article  Google Scholar 

  • Jacques, P.J., E. Girault, Ph. Harlet, and F. Delanney. 2001. “The Development of Cold-Rolled TRIP-Assisted Multiphase Steels. Low Silicon TRIP-Assisted Multiphase Steels.” ISIJ International 41 (9): 1061–67.

    Article  Google Scholar 

  • Jun, H.J., S.H. Park, S.D. Choi, and C.G. Park. 2004. “Decomposition of Retained Austenite during Coiling Process of Hot-Rolled TRIP Aided Steels.” Material Science and Engineering A 379: 204–9.

    Article  Google Scholar 

  • Katayama, T., M. Takahashi, M. Usuda, and O. Akisie. 1992. “Study of Formable High Strength Steel Sheets for Automotive Panels.” SAE International 920247.

    Google Scholar 

  • Kim, S.I., Y.H. Jin, J.N. Kwak, and K.G. Chin. 2008. “Influence of Cooling Process after Hot Rolling on Mechanical Properties of Cold Rolled TRIP Steel.” In MS&T’08 , 1784–1802. Pittsburgh.

    Google Scholar 

  • Kim, S.-J., C.G. Lee, T.-H. Lee, and C.-S. Oh. 2003. “Effect of Cu, Cr and Ni on Mechanical Properties of 0.15 Wt.% C TRIP-Aided Cold Rolled Steels.” Scripta Materialia 48: 539–44.

    Google Scholar 

  • Krauss, G. 2005. Steels: Processing, Structure and Performance. TMS.

    Google Scholar 

  • Laquerbe, L., J. Neutjens, Ph. Harlet, F. Caroff, and P. Cantinieaux. 1999. “New Processing Route for the Production of Silicon-Free TRIP-Assisted Cold-Rolled and Galvanized Steels.” In Proceedings of 41st MWSP Conference ISS, XXVII:89–99.

    Google Scholar 

  • Lee, K., Y.-R. Im, and K.G. Chin. 2008. “Effect of Carbon Content on the Microstructure and the Transformation Kinetics of Super Bainitic TRIP Steels.” In MS&T, 1785–93. Pittsburgh.

    Google Scholar 

  • Lee, S.-J., and Y.-K. Lee. 2005. “Effect of Austenite Grain Size on Martensite Transformation of the Low Alloy Steel.” Material Science Forum 475–479: 3169–72.

    Article  Google Scholar 

  • Matsumura O., Y. Sakuma, and H Takechi. 1987. “Enhancement of Elongation by Retained Austenite in Intercritical Annealed 0.4C-1.5Si-0.8Mn.” Trans ISIJ 27: 570–79.

    Google Scholar 

  • Matsumura, O., Y. Sakuma, Y. Ishii, and J. Zhao. 1992. “Effect of Retained Austenite on Formability of High Strength Sheet Steels.” ISIJ International 32 (10): 1110–16.

    Article  Google Scholar 

  • ———. 1992. “Retained Austenite in 0.4C-Si-1.2 Mn Steel Sheet Heated and Austempered.” ISIJ International 32 (9): 1014–20.

    Google Scholar 

  • Minote, T., S. Torizuka, A. Ogawa, and M. Nijura. 1996. “Modeling of Transformation Behavior and Compositional Partitioning in TRIP Steel.” ISIJ International 36 (2): 201–7.

    Article  Google Scholar 

  • Mohrbacher, H. 2007. “Microalloying with Niobium in TRIP Steels.” In Proc, of Conf. Metal 2007, 1–8. Hradec nad Moravici, Cz.

    Google Scholar 

  • Ohlert, J., W. Bleck, and K. Hulka. 2002. “Control of Microstructure in TRIP Steels by Niobium.” In International Conference: TRIP Assisted High Strength Ferrous Alloys, 199–206. Gent.

    Google Scholar 

  • Olson, G.B., and M. Cohen. 1976. “A General Mechanism of Martensite Nucleation.” Metallurgical Transactions A 7A: 1897–1904.

    Google Scholar 

  • Park, K.K., S.T. Oh, S.M. Baeck, and D.I. Kim. 2002. “In-Situ Deformation Behavior of Retained Austenite on TRIP Steel.” In Materials Science Forum, 408–412:571–76.

    Google Scholar 

  • Pichler, A., P. Stiaszny, R. Potzinger, R. Tikal, and E. Werner. 1998. “TRIP Steels with Reduced Si Content.” In Proceedings of 40th MWSP Conference ISS, 259–74.

    Google Scholar 

  • Pichler, A., S. Traint, H. Pauli, H. Mildnier, and et al. 2001. “Processing and Properties of Cold-Rolled TRIP Steels.” In 43rd MSWP Conference -ISS, 411–34.

    Google Scholar 

  • Rigsbee, J.M., and P.J. VanderArend. 1977. “Laboratory Studies of Microstructure and Structure-Properties Relationship in ‘Dual-Phase’ HSLA Steels.” In Formable HSLA and Dual-Phase Steels, Metallurgical Society of AIME, 56–86.

    Google Scholar 

  • Sakuma, Y. 2004. “Recent Achievement in Manufacturing and Application of High-Strength Steel Sheets for Automotive Body Structure.” In Proceedings of AHSS-2004, 11–18.

    Google Scholar 

  • Sakuma, Y., A. Itami, O. Kawano, and N. Kimura. 1995. “Next Generation High Strength Sheet Steel Utilizing Transformation Induced Plasticity.” Nippon Steel Technical Report, no. 64: 20–25.

    Google Scholar 

  • Sakuma, Y., D. Matlock, and G. Krauss 1992. “Intercritically Annealed and Isothermally Transformed 0.15 Pct C Steel Containing 1.2Si-1.5MN and 4 %Ni.” Metallurgical Transactions A 23A: 1221–32.

    Article  Google Scholar 

  • ———. 1993. “Effect of Molybdenum on Microstructure and Mechanical Properties of Intercritically Annealed and Isothermally Transformed Low Carbon Steel.” Material Science and Technology 9 (4): 718–24.

    Google Scholar 

  • Sakuma, Y., O. Matsumura, and H. Takechi. 1991. “Mechanical Properties and Retained Austenite in Intercritically Heat-Treated Bainite-Transformed Steel and Their Variation with Si and Mn Additions.” Metallurgical Transactions A 22A (2): 489–99.

    Article  Google Scholar 

  • Samajdar, I., E. Girault, B. Verlinden, E. Aernoudt, and J. Van Humbeeck. 1998. “Transformation during Intercritical Annealing of TRIP-assisted Steel.” Transactions of ISIJ International 38 (9): 998–1006.

    Article  Google Scholar 

  • Scott, C., D. Maugus, P. Barges, and M. Gouné. 2004. “Microalloying with Vanadium for Improved Cold Rolled TRIP Steels.” In AHSS for Automotive Application, 181–181. Winter Park, CO.

    Google Scholar 

  • “Steel Sheet with Well-Balanced Strength and Ductility, FORD/NSC Technical Meeting.” 1989. NSC.

    Google Scholar 

  • Steven, W., and A.G. Haynes. 1956. “The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels.” Journal of the Iron and Steel Institute 183 (8): 349–59.

    Google Scholar 

  • Stretcher, A., J.G. Speer, and D.K. Matlock. 2002. “Forming Response of Retained Austenite in C-Si-Mn High Strength TRIP Sheet Steel.” Steel Research 73 (6+7): 287–93.

    Google Scholar 

  • Sugimoto, K.-I., T. Iida, J. Sakaguchi, and T. Kashima. 2000. “Retained Austenite Characteristics and Tensile Properties in a TRIP Type Bainitic Sheet Steel.” ISIJ International 40 (9): 902–8.

    Article  Google Scholar 

  • Sugimoto, K.-I., M. Murata, T. Muramutso, and Y. Mukai. 2007. “Formability of C-Si-Mn-Al-Nb-Mo Ultra High-Strength TRI-Aided Sheet Steels.” ISIJ International 47 (9): 1357–82.

    Article  Google Scholar 

  • Sugimoto, K.-I., Y. Shimizu, and J. Sakaguchi. 1998a. “Microstructure and Formability of High Strength TRIP Aided Bainitic Sheet Steels.” In 275–81.

    Google Scholar 

  • Sugimoto, K.-i., M. Kobayashi, K. Inoue, X. Sun, and T. Soshiroda. 1998b. “Fatigue Strength of TRIP-Aided Bainitic Sheet Steels.” Tetsu-to-Hagane 84 (8): 559–65.

    Google Scholar 

  • Sugimoto, K.-i., K. Nakano, S.-M. Song, and T. Kashima. 2002. “Retained Austenite Characteristics and Stretch-Flangeability of High-Strength Low-Alloy TRIP Type Bainitic Sheet Steels.” ISIJ International 42 (4): 450–55.

    Article  Google Scholar 

  • Suh, D.-W., S.-J. Park, and S.-J. Kim. 2008. “Influence of Cr and Ni on Microstructural Evolution during Heat Treatment of Low Carbon Transformation Induced Plasticity Steels.” Metallurgical and Materials Transactions 39A (9): 2015–19.

    Article  Google Scholar 

  • Tomita, Y., and K. Morioka. 1997. “Effect of Microstructure on Transformation-Induced Plasticity of Silicon-Containing Low-Alloy Steel.” Materials Characterization 38: 243–50.

    Article  Google Scholar 

  • Traint, S., A. Pichler, M. Blaimschein, B. Bohler, C. Krempazsky, and E. Werner. 2004. “Alloy Design, Processing and Properties of TRIP Steels: A Critical Comparison.” In AHSS, 79–98.

    Google Scholar 

  • Traint, S., A. Pichler, K. Spiradek-Hahn, K. Hulka, and E. Werner. 2003. “The Influence of Nb on the Phase Transformation and Mechanical Properties in Al- and Si-Alloyed TRIP Steels.” In Symposium of Austenite Formation and Decomposition, 577–94. Chicago, IL, USA.

    Google Scholar 

  • Traint, S., A. Pichler, P. Stiaszny, and E. Werner. 2001. “Mechanical Behavior and Phase Transformation of an Aluminium Alloyed TRIP Steel.” In 43rd MSWP Conference -ISS.

    Google Scholar 

  • Tsukatani, I., S. Hashimoto, and T. Inque. 1991. “Effect of Silicon and Manganese Additions on Mechanical Properties of High Strength Sheet Steel Containing Retained Austenite.” ISIJ International 31 (9): 992–1000.

    Article  Google Scholar 

  • Ushioda, K., and N. Yoshinaga. 1996. “Recent Progress in Physical Metallurgy of Cold Rolled Sheet Steels.” In Thermomechanical Processing in Theory, Modeling & Practice, 162–88. Stockholm, Sweden.

    Google Scholar 

  • Vasilakos, A., K. Papamantellos, G. Haidemenopoulos, and W. Bleck. 1999. “Experimental Determination of the Stability of Retained Austenite in Low Alloy TRIP Steels.” Steel Research 70 (11): 466–471

    Google Scholar 

  • Vrieze, J. 1999. “Annealing Treatment for Producing Cold-Rolled Dual-Phase and TRIP-Steels for Automotive Applications.” In Proceedings of 41th MWSP Conference, ISS, 277–94.

    Google Scholar 

  • Wang, J., and S. Van der Zwaag. 2001. “Stabilization Mechanisms of Retained Austenite in Transformation Induced Plasticity Steels.” Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 32A (6): 1521–39.

    Google Scholar 

  • Yakubovsky, O., N. Fonstein, and D. Bhattacharya. 2002. “Stress-Strain Behavior and Bake-Hardening of TRIP and TRIP-aided Multiphase Steels.” In 263–70. Gent.

    Google Scholar 

  • Yakubovsky, O., N. Fonstein, and D. Bhattacharya. 2004. “Effect of Composition and Microstructure on the Stress-Stress Behavior of TRIP and Dual-Phase Steels.” In International Conference on Advanced High Strength Sheet Steels for Automotive Applications, 295–306. Winter Park, CO.

    Google Scholar 

  • Yang, H.-S., and H.K.D.H. Bhadeshia. 2009. “Austenite Grain Size and the Martensite-Start Temperature.” Scripta Materialia 60: 493–95.

    Article  Google Scholar 

  • Yokoi, T., K. Kawasaki, M. Takahashi, K. Koyama, and M. Mizui. 1996. “Fatigue Properties of High Strength Steels Containing Retained Austenite.” Technical notes/JSAE REview 17: 210–12.

    Google Scholar 

  • Zackey, V., E. Parker, D. Fahr, and R. Busch. 1967. “The Enhancement of Ductility in High-Strength Steels.” Transactions of ASM 60: 252–59.

    Google Scholar 

  • Zaefferer, S., J. Ohlert, and W. Bleck. 2004. “A Study of Microstructure, Transformation Mechanisms and Correlation between Microstructure and Mechanical Properties of a Low-Alloyed TRIP-Steel.” Acta Materaila 52: 2765–78.

    Article  Google Scholar 

  • Zarei-Hanzaki, A., P.D. Hidgson, and S. Yue. 1995. ISIJ International 35 (3): 324.

    Google Scholar 

  • Zhao, L., J. Sietsma, and S. van der Zwaag. 1999. “Phase Transformation and Microstructure Evolution in Al-Containing TRIP Steels.” In 77–82.

    Google Scholar 

  • Zhu, K., H. Chen, J.-Ph. Masse, O. Bouaziz, and G. Gachet. 2013. “The Effect of Prior Ferrite Formation on Bainite and Martensite Transformation Kinetics in Advanced High Strength Steel.” Acta Materalia 61: 6025–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonstein, N. (2015). TRIP Steels. In: Advanced High Strength Sheet Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-19165-2_5

Download citation

Publish with us

Policies and ethics