Skip to main content

Effect of Structure on Mechanical Properties of Dual-Phase Steels

  • Chapter
Book cover Advanced High Strength Sheet Steels

Abstract

The chapter contains detailed theoretical analysis and experimental data on relationship of structure parameters of ferrite–martensite steels (volume fraction and hardness of martensite, ferrite grain size, and structure morphology) and various mechanical properties as yield and tensile strength, strain hardening, elongation, and reduction of area. Experimentally shown redistribution of strain depending on martensite strength explains limitation in application of the law of mixture. Various fracture characteristics including resistance to crack initiation and propagation, as well as resistance to fatigue hydrogen embrittlement, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk, J., and A. Graijcar. 2007. “Heat Treatment and Mechanical Properties of Low-Carbon Steel with Dual-Phase Microstructure.” Journal of Achievements in Materials and Manufacturing Engineering 22 (5): 13–20.

    Google Scholar 

  • Araki, K., S.H. Fukunaka, and K. Uchida. 1977a. “Development of Continuously Annealed High Strength Cold Rolled Sheet Steels.” Trans ISIJ 17 (12): 701–9.

    Google Scholar 

  • Araki, K., Y. Takada, and K. Nakaoka. 1977b. “Work Hardening of Continuously Annealed Dual-Phase Steels.” Trans ISIJ 17 (12): 710–17.

    Google Scholar 

  • Ashby, M.F. 1966. “Work Hardening of Dispersion-Hardened Crystals.” Philosophical Magazine 14 (132): 1157–78.

    Article  Google Scholar 

  • Bag, A., K.K. Ray, and E.S. Dwarakadasa. 1999. “Influence of Martensite Content and Morphology on Tensile and Impact Properties of High-Martensite Dual-Phase Steels.” Metallurgical and Materials Transactions A 30A (5): 1193–202.

    Article  Google Scholar 

  • Bailey, D.I., and R. Stevenson. 1979. “High Strength Low Carbon Sheet Steel by Thermomechanical Treatment: I. Strengthening Mechanisms.” Metallurgical Transactions 10A (1): 47–55.

    Article  Google Scholar 

  • Baird, J.D. 1963. “Strain Aging in Steel - Critical Review.” Iron and Steel 36 (7): 326–34.

    Google Scholar 

  • Balliger, N.K., and T. Gladman. 1981. “Work Hardening of Dual-Phase Steel.” Metal Science 15 (3): 95–108.

    Article  Google Scholar 

  • Bergstrom, Y., and Y. Granbom. 2008. “Model for the Stress-Strain Behavior of Dual-Phase Steels.” In IDDRG, 173–84. Olofstrom, Sweden.

    Google Scholar 

  • Bhadeshia, H.K.D.H., and D.V. Edmonds. 1980. “Analysis of Mechanical Properties and Microstructure of High-Silicon Dual-Phase Steel.” Metal Science 14 (2): 41–49.

    Article  Google Scholar 

  • Bleck, W., and K. Phiu-On. 2005. “Grain Refinement and Mechanical Properties in Advanced High Strength Sheet Steels.” In HSLA’ 2005, 50–57. Sanya, China.

    Google Scholar 

  • Bortsov, A.N., and N.M. Fonstein. 1984a. “Influence of Carbon Concentration on the Mechanical Properties of the Low-Carbon Ferrite-Martensite Steels.” Physical Metallurgy and Metallography (USSR) 57 (4): 142–48.

    Google Scholar 

  • ———. 1984b. “Influence of Cold Deformation and Low-Temperature Tempering on Mechanical Properties of Dual-Phase Ferritic-Martensitic Steels.” Soviet Materials Science 20 (2): 142–47.

    Google Scholar 

  • ———. 1986. “The Distribution of Strain between the Phases of Ferrite-Martensite Steel.” Physical Metallurgy and Metallography (USSR) 61 (2): 74–81.

    Google Scholar 

  • Bronfin, B.M., M.I. Goldshtein, and V.P. Shveikin. 1986. “Effect of the Cooling Rate from the Intercritical Temperature Range on Strain Hardening and Agening of Steel 05G2S2.” The Physics of Metals and Metallography (USSR), no. 11.

    Google Scholar 

  • Bronfin, B.M., M.I. Goldstein, A.A. Emelyanov, and et al. 1983. “The Strength and Ductility of Dual-Phase Ferrite-martensite Steel.” The Physics of Metals and Metallography (USSR) 56 (1): 167–73.

    Google Scholar 

  • Brown, L.M., and D.R. Clarke. 1975. “Work Hardening due to Internal Stresses in Composite Materials.” Acta Metallurgica 23 (7): 821–30.

    Article  Google Scholar 

  • Brown, L.M., and W.M. Stobbs. 1971. “Work Hardening of Cupper Silica. II The Role of Plastic Relaxation.” Philosophical Magazine 23 (185): 1201–33.

    Article  Google Scholar 

  • Bucher, J.H., E.G. Hamburg, and J.F. Butler. 1979. “Property Characterization of VAN-QN Dual-Phase Steels.” In Structure and Properties of Dual-Phase Steels, 346–59. New Orleans.

    Google Scholar 

  • Budford, D.A., D.K. Matlock, and G. Krauss. 1985. “Effect of Microstructural Refinement on the Deformation Behavior of Dual-Phase Steels.” In Strength of Metals and Alloys, 1:189–94. Montreal, Canada.

    Google Scholar 

  • Calcagnotto, M., Y. Adachi, D. Ponge, and D. Raabe. 2011. “Deformation and Fracture Mechanism in Fine- and Ultrafined-Grained Ferrite/martensite Dual-Phase Steels and Effect of Aging.” Acta Materiala 59: 658–70.

    Article  Google Scholar 

  • Chernyavskii, K.S., N.M. Fonstein. 1984. “Stereological Study of Fracture.” Industrial Laboratory 51 (3): 45–49.

    Google Scholar 

  • Colla, V., and et al. 2009. “Strain Hardening Behavior of Dual-phase Steels.” Metallurgical and Materials Transactions A 40A (11): 2557–67.

    Google Scholar 

  • Cong, Z.H., and et al. 2009. “Stress and Strain Partitioning of Ferrite and Martensite during Deformation.” Metallurgical and Materials Transactions A 40A (6): 1383–87.

    Google Scholar 

  • Davies, R.G. 1977. “On the Ductility of Dual-Phase Steels.” In Formable HSLA and Dual-Phase Steels, 25–39.

    Google Scholar 

  • ———. 1978a. “Influence of Martensite Composition and Content on the Properties of Dual-Phase Steels.” Metallurgical Transactions 9A (5): 671–79.

    Article  Google Scholar 

  • ———. 1978b. “The Mechanical Properties of Zero Carbon Ferrite plus Martensite Structure.” Metallurgical Transactions 9A (3): 451–66.

    Article  Google Scholar 

  • ———. 1978c. “The Deformation Behavior of a Vanadium-Strengthened Dual Phase Steel.” Metallurgical Transactions A 9 (1): 41–52. doi:10.1007/BF02647169.

    Article  Google Scholar 

  • Davies, R.G. 1979a. “Early Stages of Yielding and Strain Ageing of a Vanadium-Containing Dual-Phase Steels.” Metallurgical Transactions 10A (10): 1549–55.

    Article  Google Scholar 

  • ———. 1979b. “Influence of Silicon and Phosphorus on the Mechanical Properties of Both HSLA and Dual-Phase Steels.” Metallurgical Transactions 10a (1): 113–18.

    Google Scholar 

  • ———. 1981a. “Tempering of Dual-Phase Steels.” In Fundamentals of Dual-Phase Steels, 265–78.

    Google Scholar 

  • ———. 1981b. “Hydrogen Embrittlement of Dual-Phase Steel.” Metallurgical Transactions 12A (9): 1667–72.

    Google Scholar 

  • De Cooman, B.C., S. Lee, and Y. Estrin. 2013. “Strain Hardening Control in AHSS for Automotive Applications.” In Veil, CO, USA.

    Google Scholar 

  • Eldis, George T. 1981. “Influence of Microstructure and Testing Procedure on the Measured Mechanical Properties of Heat Treated Dual-Phase Steels.” In Conference of Structure and Properties of Dual-Phase Steels, 202–20. New Orleans, LA, USA

    Google Scholar 

  • Eshelby, J.D. 1957. “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems.” Proceedings of the Royal Society (London) A241: 376–96.

    Google Scholar 

  • Fisher, I., and Gurland, G. 1981. “The Effect of Alloy Deformation on the Average Spacing Parameters of Nondeforming Particles.” Metallurgical Transactions 12 A (2): 167–171.

    Google Scholar 

  • Fonstein, N. 2005. “Effect of Al, C, and Mn on Structure and Mechanical Properties of Dual-Phase and TRIP Steels.” In HSLA’05. Sanya, China.

    Google Scholar 

  • Fonstein, N., H.J. Jun, G. Huang, and et al. 2011. “Effect of Bainite on Mechanical Properties of Multi-Phase Ferrite-Bainite-Martensite Steels.” In MST’11.

    Google Scholar 

  • Fonstein, N.M., A.N. Bortsov, and K.S. Chernyavskii. 1984. “Stereological Description of Two-Phase Structure.” Industrial Laboratory 51 (12): 34–37.

    Google Scholar 

  • Fonstein, N.M., and T.M. Efimova. 2006. “Study of the Effects of ‘New’ Ferrite on the Properties of Dual-Phase Steels.” Metallurgist 50 (9–10): 481–89.

    Article  Google Scholar 

  • Fonstein, N.M., M. Kapustin, N. Pottore, I. Gupta, and O. Yakubovsky. 2007. “Factors That Determine the Level of the Yield Strength and the Return of the Yield-Point Elongation in Low-Alloy Ferrite-Martensite Steels.” The Physics of Metals and Metallography 104 (3): 323–336.

    Article  Google Scholar 

  • Fonstein, N.M., L.M. Storozeva, and B.A. Bukreev. 1985. “The Effects of Vanadium on the Properties of Two-Phase Ferrito-Martensitic Steels.” Russian Metallurgy, no. 2: 111–16.

    Google Scholar 

  • Gerbase, I., I.D. Embury, and R.M. Hobbs. 1979. “The Mechanical Behavior of Some Dual-Phase Steels - With Emphasis on the Initial Work Hardening Rate.” In Structure and Properties of Dual-Phase Steels, 118–44.

    Google Scholar 

  • Girina, O.A., N.M. Fonstein, and D. Bhattacharya. 2008. “Effect of Nb on the Phase Transformation and Mechanical Properties of Advanced High Strength Dual-Phase Steels.” In International Conference of New Developments on Metallurgy and Applications of High Strength Steels, 29–35. Buenos Aires.

    Google Scholar 

  • Greday, T., H. Mathy, and P. Messien. 1979. “About Different Ways to Obtain Multi-Phase Steels.” In Structure and Properties of Dual-Phase Steels, 260–80.

    Google Scholar 

  • Gribb, W.R., and I.M. Rigsbee. 1979. “Work-Hardening Behavior and Its Relationship to the Microstructure and Mechanical Properties of Dual-Phase Steels.” In Structure and Properties of Dual-Phase Steels, 91–117.

    Google Scholar 

  • Gunduz, S., B. Demir, and R. Kacar. 2008. “Effect of Aging Temperature and Martensite by Volume on Strain Aging Behavior of Dual-Phase Steel.” Ironmaking and Steelmaking 35 (1): 63–68.

    Article  Google Scholar 

  • Gurland, G. 1982. Metallurgical Transactions 13A (10): 1821–26.

    Google Scholar 

  • Hansen, S.S., and R.R. Pradhan. 1981. “Structure/property Relationships and Continuous Yielding Behavior in Dual-Phase Steels.” In Conference of Fundamentals of Dual-Phase Steels, 113–44. Chicago, IL, USA

    Google Scholar 

  • Hashiguchi, K., and M. Nashida. 1980. “Effect of Alloying Element and Cooling Rate after Annealing on Mechanical Properties of Dual Phase Steel.” Kawasaki Steel Techn. Report, no. 1: 70–78.

    Google Scholar 

  • Himmel, L., K. Goodman, and W.L. Haworth. 1981. “Strain Ageing in a Dual-Phase Steel Containing Vanadium.” In Fundamentals of Dual-Phase Steels, 309–14. Chicago, IL, USA.

    Google Scholar 

  • Hollomon, J.H. 1945. “Tensile Deformation.” Transactions of ASM, no. 162: 268–90.

    Google Scholar 

  • Hong, B.D., T.C. Lei, J.B. Yang, and D.M. Jiang. 1986. “Deformation-Aging Strengthening of High Strength Steel 30CrMnSi.” In 7th International Conference, 2:1013–18. Montreal.

    Google Scholar 

  • Hornbogen, E. 1982. “Microstructure and Mechanism of Fracture.” In Strength of Metals and Alloys, 3:1059–73. Melbourne, Australia.

    Google Scholar 

  • Jaoul B. 1957. Journal of Mechanics and Physics of Solids 5 (1): 95–114.

    Google Scholar 

  • Jiang, Z., Z. Guan, and J. Lian. 1995. “Effect of Microstructure Variables on the Deformation Behavior of Dual-phase Steels.” Materials Science and Engineering A, no. A190: 55–64.

    Google Scholar 

  • Johnston, W.G., and J.J. Gilman. 1959. “Dislocation Velocities, Dislocation Densities and Plastic Flow in Lithium Fluoride Crystals.” Journal of Applied Physics 30 (2): 129–44.

    Article  Google Scholar 

  • Kim, N., and G. Thomas. 1981. “Effect of Morphology on the Mechanical Behavior of Fe/2Si/0.1C Steel.” Metallurgical Transactions 12A (3): 483–89.

    Article  Google Scholar 

  • Koo, I.Y., M.I. Young, and G. Thomas. 1980. “On the Law of Mixtures and Dual-Phase Steels.” Metallurgical Transactions 11 A (5): 852–54.

    Google Scholar 

  • Korzakwa, D.A., R.D. Lawson, D.K. Matlock, and G. Krauss. 1980. “A Consideration of Models Describing the Strength and Ductility of Dual-Phase Steels.” Scripta Materialia 14 (9): 1023–28.

    Article  Google Scholar 

  • Korzekwa, D.A., D.K. Matlock, and G. Krauss. 1984. “Dislocation Substructure as a Function of Strain in a Dual-Phase Steel.” Metallurgical and Materials Transactions A 15A (6): 1221.

    Article  Google Scholar 

  • Kraft, I.M. 1964. “Correlation of Plane Strain Crack Toughness with Strain Hardening Characteristics of a Low, Medium and High Strength Steel.” Applied Materials Research 3 (2): 83–96.

    Google Scholar 

  • Krieger, M., and et al. 2006. “Mechanical Properties and Bake Hardening Behavior of Two Cold Rolled Multiphase Sheet Steels Subjected to CGL Heat Treatment Simulation.” Steel Research International 77 (9–10): 668–74.

    Google Scholar 

  • Krupitzer, R.P. 1981. “Strain Ageing Behavior in Continuously-Annealed Dual-Phase Steel.” In Fundamentals of Dual-Phase Steels, 315–30.

    Google Scholar 

  • Lanzilotto, C.A., and F.B. Pickering. 1982. “Structure-Property Relationship in Dual-Phase Steels.” Material Science 16 (8): 371–82.

    Google Scholar 

  • Lawson, R.D., D.K. Matlock, and G. Krauss. 1981. “The Effect of Microstructure on the Deformation Behavior and Mechanical Properties of Dual-Phase Steel.” In Fundamentals of Dual-Phase Steels, 347–81.

    Google Scholar 

  • Lee, H.C., and G. Gurland. 1978. “Hardness and Deformation of Cemented Tungsten Carbide.” Materials, Science and Engineering 33 (1): 125–33.

    Article  Google Scholar 

  • Leslie, W., and R. Sober. 1967. “The Strength of Ferrite and of Martensite as Functions of Compositions, Temperature and Strain Rate.” Transactions of ASM 60: 459–84.

    Google Scholar 

  • Lovicu, G., M. Bottazi, F. D’Aiuto, and M. DeSanctis. 2012. “Hydrogen Embrittlement of Automotive Advanced High-Strength Steel.” Metallurgical and Materials Transactions A 43 (11): 4075–4087

    Google Scholar 

  • Ludwig, P. 1909. Element Der Technologichen Mechanick. Berlin: Springer.

    Book  Google Scholar 

  • Ma, M.T., D.Z. Wang, and B.R. Wu. 1983. “On the Law of Mixture in Dual-Phase Steels.” In Mechanical Behavior of Materials, 2:1067–73. Stockholm, Sweden.

    Google Scholar 

  • Marder, A.R. 1977. “Factors Affecting the Ductility of ‘Dual-Phase’ Alloys".” In Formable HSLA and Dual-Phase Steels, Metallurgical Society of AIME, 87–98.

    Google Scholar 

  • ———. 1982. “Deformation Characteristics of Dual-Phase Steels.” Metallurgical Transactions 13A (1): 85–92.

    Google Scholar 

  • Marder, A.R., and B.L. Bramfitt. 1979. “Processing of a Molybdenum-Bearing Dual-Phase Steel.” In Conference of Structure and Properties of Dual-Phase Steels, 242–59. New Orleans, LA, USA.

    Google Scholar 

  • Matlock, David K., G. Krauss, L.F. Romas, and G.S. Huppi. 1979. “A Correlation of Processing Variables with Deformation Behavior of Dual-Phase Steels.” In Conference of Structure and Properties of Dual-Phase Steels, 62–90. New Orleans, LA, USA.

    Google Scholar 

  • Matsuda, R., and T. Shimomura. 1980. “Production of High Strength Cold-Rolled Steel Sheets by the NKK Continuous Annealing Line Process (NKK-CAL Process).” Nippon Kokan Technical Report, no. 20: 1–9.

    Google Scholar 

  • Mileiko, C.T. 1969. “The Tensile Strength and Ductility of Continuous Fibre Composites.” Journal of Materials Science 4 (11): 974–77.

    Article  Google Scholar 

  • Morrison, W.B. 1966. “The Effect of Grain Size on Stress-Strain Relationship in Low Carbon Steels.” Transactions of ASM 59: 224–46.

    Google Scholar 

  • Mould, R.R., and C.C. Skena. 1977. “Structure and Properties of Cold-Rolled Ferrite-Martensite (Dual-Phase) Steel Sheets”. In Formable HSLA and Dual-Phase Steels 181–204, Chicago, IL, USA.

    Google Scholar 

  • Nakaoka, K., K. Araki, and K. Kurihara. 1977. “Strength, Ductility and Ageing Properties of Continuously-Annealed Dual-Phase High Strength Sheet Steels.” In Formable HSLA and Dual-Phase Steels, 126–41.

    Google Scholar 

  • Nishimoto, A., Y. Hosoya, and K. Nakaoka. 1981. “A New Type of Dual Phase Steel Sheet for Automobile.” Transactions of ISIJ 21 (11): 778–82.

    Article  Google Scholar 

  • Ostrom, P. 1981. “Deformation Models for Two-Phase Materials.” Metallurgical Transactions 12A (12): 355–57.

    Article  Google Scholar 

  • Pouranvari, M. 2010. “Tensile Strength and Ductility of ferrite-Martensite Dual-Phase Steels.” MjoM 16 (3): 187–94.

    Google Scholar 

  • Pradhan, R. 1985. “Metallurgical Aspects of Quenched and Tempered Dual-Phase Steels Produced via Continuous Annealing.” In Technology of Continuously Annealed Cold -Rolled Sheet Steel, 297–318. Detroit, MI: Metal/Society of AIME.

    Google Scholar 

  • Ramos, L.F., D.K. Matlock, and G. Krauss 1979. “On the Deformation Behavior of Dual-Phase Steels.” Metallurgical Transactions 10A (2): 259–61.

    Article  Google Scholar 

  • Rashid, M.S., and B.V.N. Rao. 1981. “Tempering Characteristic of a Vanadium Containing Dual-Phase Steels.” In Fundamentals of Dual-Phase Steels, 249–64.

    Google Scholar 

  • Rigsbee, J.M., J.K. Abraham, A.T. Davenport, J.E. Franklin, and J.W. Pickens. 1981. “Structure-Processing and Structure-Property Relationships in Commercially Processed Dual-Phase Steels.” In Conference of Structure and Properties of Dual-Phase Steels, 304–29, New Orleans, LA, USA.

    Google Scholar 

  • Rizk A., and Bourell D.L. 1982. “Dislocation Density Contribution to Strength of Dual Phase Steels.” Scripta Materialia 16 (12): 1321–24.

    Article  Google Scholar 

  • Romaniv, O.N., et al. 1977. Soviet Materials Science, no. 3: 31–36.

    Google Scholar 

  • Sakaki, T., K. Sugimoto, and T. Fuluzato. 1983. “The Role of Internal Stresses for Continuous Yielding of Dual-Phase Steels.” Acta Metallurgica 31 (10): 1737–46.

    Article  Google Scholar 

  • Sarosiek, A.M., and W.S. Owen. 1983. “On the Importance of Extrinsic Transformation Accommodation Hardening in Dual-Phase Steels.” Scripta Materialia 17 (2): 227–31.

    Article  Google Scholar 

  • Shieh, W.T. 1974. “The Relation of Microstructure and Fracture Properties of Electron Beam Melted Modified SAE 4620 Steels.” Metallurgical Transactions 5A (5): 1069–85.

    Article  Google Scholar 

  • Song, R., D. Ponge, and D. Raabe. 2005. “Improvement of the Work Hardening Rate of Ultrafine Grained Steels through Second Phase Particles.” Scripta Materialia 52: 1075–80.

    Article  Google Scholar 

  • Speich, G.R., and R.L. Miller. 1979. “Mechanical Properties of Ferrite-Martensite Steels.” In Structure and Properties of Dual-Phase Steels, 145–82. New Orleans, LA, USA.

    Google Scholar 

  • Speich, G.R., and R.L. Miller. 1981. “Mechanical Properties of Ferrite-Martensite Steels.” In Conference of Structure and Properties of Dual-Phase Steels, Symposium at the AIME Annual Meeting, 145–82. New Orleans, LA, USA.

    Google Scholar 

  • Stevenson, R. 1977. “Crack Initiation and Propagation in Thermal Mechanically Treated Sheet Steels.” In Formable HSLA and Dual-Phase Steels, Metallurgical Society of AIME, 101–10.

    Google Scholar 

  • Stevenson, R., D.J. Bailey, and G. Thomas. 1979. “High Strength Low Carbon Sheet Steel by Thermomechanical treatment: II. Microstructure.” Metallurgical Transactions A 10 (1): 57–62. doi:10.1007/BF02686406.

    Article  Google Scholar 

  • Steven, W., and A.G. Haynes. 1956. “The Temperature of Formation of Martensite and Bainite in Low-Alloy Steels.” Journal of the Iron and Steel Institute 183 (8): 349–59.

    Google Scholar 

  • Storozeva, L.M., N.M. Fonstein, and S.A. Golovanenko. 1985. “Examination of Quench and Strain Aging of Low-Carbon Ferritic-Martensitic Steels.” Russian Metallurgy, no. 1: 89–93.

    Google Scholar 

  • Stratmann, P., and E. Hornbogen. 1979. “Mechanische Eigenschaften Zweiphasigerduplex-Und Dispersiongefuge in Nickel Stahlen.” Stahls Und Eisen 99 (12): 643–48.

    Google Scholar 

  • Sudo, M., and I. Tsukatani. 1984. “Influence of Microstructure on Yielding Behavior in Continuous-Annealed Multi-Phase Sheet Steels.” In Technology of Continuously Annealed Cold-Rolled Sheet Steel, 341–60. Detroit, MI.

    Google Scholar 

  • Sugimoto, K-I., J. Sakaguchi, T. Ida, and T. Kashima. 2000. “Stretch-Flangeability of a High-Strength TRIP Type Bainitic Sheet Steel.” ISIJ International 40 (9): 920–026.

    Article  Google Scholar 

  • Sugimoto, K., T. Sakaki, T. Fukusato, and O. Miyagawa. 1985. “Influence of Martensite Morphology on Initial Yielding and Strain Hardening in a 0.11C-1.36Mn Dual-Phase Steel.” Journal of ISIJ 71 (8): 70–77.

    Google Scholar 

  • Swift, H.W. 1952. Journal of the Mechanics and Physics of Solids, no. 1: 1–32.

    Google Scholar 

  • Szewczyk, A.F., and I. Gurland. 1982. “A Study of the Deformation and Fracture of a Dual-Phase Steel.” Metallurgical Transactions 13A (10): 1821–26.

    Article  Google Scholar 

  • Takada, Y., Y. Hosoya, and K. Nakaoka. 1982a. “Possibilities of Achieving Low Yield Ratio with Low Manganese Dual-Phase Steels.” In Metallurgy of Continuously Annealed Steels, 251–69.

    Google Scholar 

  • Takagi, S., Y. Toji, M. Yoshino, and K. Hasegawa. 2012. “Hydrogen Embrittlement Resistance Evaluation of Ultra-High Strength Steel Sheets for Automobiles.” ISIJ International 52 (2): 316–22.

    Article  Google Scholar 

  • Tamura, I., and Y. Tomota. 1973. “On the Strength and Ductility of True Phase Iron Alloys.” Transactions of the Iron and Steel Institute of Japan 13 (4): 283–92.

    Google Scholar 

  • Tanaka, T., M. Nishida, K. Hachiguchi, and T. Kato. 1979. “Formation and Properties of Ferrite plus Martensite Dual-Phase Structures.” In Structure and Properties of Dual-Phase Steels. Vol. 221–241.

    Google Scholar 

  • Tkach, A.N., N.M. Fonstein, V.N. Simin’kovich, and et al. 1984. “Fatique Crack Growth in a Dual-Phase Ferritic-Martensitic Steel.” Soviet Materials Science, no. 5: 448–54.

    Google Scholar 

  • Tomota, Y., Y. Kawamura, and K. Kuroki. 1981. “On Ductile Fracture of Steels Containing the Coarse Second Phase.” Bulletin of JSME 24 (188): 282–89.

    Article  Google Scholar 

  • Tomota, Y., and I. Tamura. 1981. “Mechanical Properties of Ductile Two-Phase Steels.” Journal Iron and Steel Institute of Japan 67 (13): 439–55.

    Google Scholar 

  • Tomota, Y., and I. Tamura. 1982. “Mechanical Properties of Dual-Phase Steels.” Transactions of ISIJ 22 (5): 677–89.

    Google Scholar 

  • Tseng, D., and F.H. Vitovec. 1981. “The Bauschinger Effect and Work-hardening of Dal-Phase Steels.” In Fundamentals of Dual-Phase Steels, 399–411.

    Google Scholar 

  • Tsipouridis, P., E. Werner, C. Krempaszky, and E. Tragl. 2006. “Formability of High-Strength Dual-Phase Steels.” Steel Research International 77 (10): 654–67.

    Google Scholar 

  • Uggowitzer, P., and H.P. Stuwe. 1982. “Plastizitat von Ferritisch-Martensitischen Zweiphasenstahlen.” Zeitschrift für Metallkunde 73 (5): 277–85.

    Google Scholar 

  • Voce, E. 1948. “The Relationship between Stress and Strain for Homogeneous Deformation.” Journal of the Institute of the Metals 74: 537–49.

    Google Scholar 

  • Waterschoot, T., De, A.K., Vanderputte, S., and De Coman, B.C. 2003. “Static Strain Aging Phenomena in Cold-rolled Dual-Phase Steels.” Metallurgical and Materials Transactions A 34A (3): 781–91.

    Article  Google Scholar 

  • Waterschoot, T., K. Verbeken, and B.C. De Cooman. 2006. “Tempering Kinetics of the Martensitic Phase in DP Steel.” ISIJ International 46 (1): 138–46.

    Article  Google Scholar 

  • Yang, D.Z., D.K. Matlock, and G. Krauss. 1985. “The Effect of Cold-Rolling on Aging of an Intercritically Annealed Mn-Si-C Steel.” In Technology O Continuously Annealed Cold-Rolled Sheet Steel, 319–39. Detroit.

    Google Scholar 

  • Yegneswaran, A.H., and K. Tangri. 1983. “Strain Distribution and Load Transfer Characteristics of a Cu-9.6% Al Dual-Phase Structure.” Zeitschrift für Metallkunde 74 (8): 521–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonstein, N. (2015). Effect of Structure on Mechanical Properties of Dual-Phase Steels. In: Advanced High Strength Sheet Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-19165-2_3

Download citation

Publish with us

Policies and ethics