Skip to main content

Austenitic Steels with TWIP Effect

  • Chapter
Advanced High Strength Sheet Steels

Abstract

High-Mn austenitic steels with twinning-induced plasticity demonstrate the highest combination of strength and elongation although their commercialization delayed. This chapter contains fundamentals of TWIP phenomenon, features of deformation mechanism, and strain hardening, as well as the role of grain size, alloying, and microalloying. Impacts of temperature of testing and strain rate are presented. Propensity to delayed fracture and found ways to suppress it are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allain, S., O. Bouaziz, and J.-P. Chateau. 2010. “Thermally Activated Dislocation Dynamics in Austenitic FeMnC Steels at Low Homologous Temperature.” Scripta Materialia 62 (7): 500–503.

    Article  Google Scholar 

  • Allain, S., J.-P. Chateau, and O. Bouaziz. 2004a. “A Physical Model of the Twinning Induced Plasticity Effect in a High Manganese Austenitic Steel.” Material Science and Engineering A 387–389: 143–47.

    Article  Google Scholar 

  • Allain, S., J.-P. Chateau, O. Bouaziz, and S. Migot. 2004b. “Correlations between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys.” Material Science and Engineering A 387–389: 158–62.

    Article  Google Scholar 

  • Allain, S., P. Cugy, C. Scott, and J.-P. Chateau. 2008. “The Influence of Plastic Instabilities on the Mechanical Properties of a High-Manganese Austenitic FeMnC Steel.” International Journal of Materials Research 99 (7): 734–38.

    Article  Google Scholar 

  • Barbier, D., N. Gey, S. Allain, and N. Bozzolo. 2009. “Analysis of the Tensile Behavior of a TWIP Steel Based on the Texture and Microstructure Evolutions.” Material Science and Engineering A 500: 196.

    Article  Google Scholar 

  • Bouaziz, O., S. Allain, M. Huang, and D. Barbier. 2011a. “Effects of Microstructural Length Scales and of Carbon Content on the Work Hardening of Twinning Induced Plasticity Steels.” In HMnS – 2011. Seoul, South Korea.

    Google Scholar 

  • Bouaziz, O., S. Allain, C. Scott, P. Cugy, and D. Barbier. 2011b. “High Manganese Austenitic Twinning Induced Plasticity Steels. A Review of the Microstructure Properties Relationships.” Current Opinion in Solid State and Material Science 15 (4): 141–68.

    Article  Google Scholar 

  • Bouaziz, O., and N. Guelton. 2001. “Modelling of TWIP Effect on Work-Hardening.” Material Science and Engineering A A319–321: 246–49.

    Article  Google Scholar 

  • Chen, L., H.-S. Kim, S.K. Kim, and B.C. De Cooman. 2007. “Localized Deformation due to Porteviin-LeChatelier Effect in 18Mn-0.6C TWIP Austenitic Steel.” ISIJ International 47: 1804.

    Article  Google Scholar 

  • Chen, L., Y. Zhao, and X. Qin. 2013. “Some Aspects of High Manganese Twinning-Induced Plasticity (TWIP) steel. A Review.” Acta Metallurgica Sinica. English Letters 26 (1): 1–15.

    Google Scholar 

  • De Cooman, B.C., K.G. Chin, and J. Kim. 2011. “High Mn TWIP Steels for Automotive Application.” In New Trends and Developments in Automotive System Engineering, 101–28. INTECH.

    Google Scholar 

  • De Cooman, B.C., O. Kwon, and K.G. Chin. 2012. “State-of-the-Knowledge on TWIP Steel.” Material Science and Technology 28: 513.

    Article  Google Scholar 

  • Dieudonne, T., L. Marchetti, M. Wery, and F. Miserque. 2014. “Role of Copper and Aluminium on the Corrosion Behavior of Austenitic Fe-Mn-C TWIP Steels in Aqueous Solutions and the Related Hydrogen Absorption.” Corrosion Science 83: 234–44.

    Article  Google Scholar 

  • Dini, G., and R. Ueji. 2011. “Effect of Grain Size and Grain Orientation on Dislocations Structure in Tensile Strained TWIP Steel during Initial Stages of Deformation.” In HMnS – 2011. Seoul, South Korea.

    Google Scholar 

  • Dumay, A., J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz. 2008. “Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe-Mn-C Steel.” Material Science and Engineering A 483–484: 184–87.

    Article  Google Scholar 

  • El-Danaf, E., S.R. Kalidindi, and R.D. Doherty. 1999. “Influence of Grain Size and Stacking-Fault Energy on Deformation Twinning in Fcc Metals.” Metallurgical and Materials Transactions 30: 1223–33.

    Article  Google Scholar 

  • Frommeyer, G., U. Brux, and P. Neumann. 2003. “Supra-Ductile and High-Strength Manganese – TRIP/TWIP Steels for High Energy Absorption Purposes.” ISIJ International 43 (3): 438–46.

    Article  Google Scholar 

  • Grassel, O., G. Kriger, G. Frommeyer, and L. Meyer. 2000. “High Strength Fe-Mn-(Al.Si) TRIP/TWIP Steel Development – Properties-Application.” International Journal of Plasticity 16: 1391–1409.

    Article  Google Scholar 

  • Hamada, A.S., F.M. Haggag, and D.A. Porter. 2012. “Non-Destructive Determination of the Yield Strength and Flow Properties of High Manganese Twinning-Induced Plasticity Steels.” Material Science and Engineering A 558: 766–70.

    Article  Google Scholar 

  • Hong, S., S.Y. Shin, J. Lee, and D.-H. Ahn. 2014. “Serration Phenomena Occurring during Tensile Tests of Three High-Manganese Twinning-Induced Plasticity (TWIP) Steels.” Metallurgical and Materials Transactions 45 (2): 633–45.

    Article  Google Scholar 

  • Idrisi, H., K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques. 2010. “On the Mechanism of Twin Formation in Fe-Mn-C TWIP Steels.” Acta Materialia 58: 2364–2476.

    Article  Google Scholar 

  • Jin, J.E., and Y.K. Lee. 2012. “Effect of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel.” Acta Materialia 60 (4): 1680–88.

    Article  Google Scholar 

  • Jinyu, G., L. Rendong, M. Jinsong, and T. Fuping. 2013. “Study on High-Strength Steel and Application for Automobile in Anstel.” In The 2nd Intern. Symposium on Automobile Steel. Anshan, China.

    Google Scholar 

  • Kang, S., J.-G. Jung, and Y.-K. Lee. 2012. “Effect of Niobium on Mechanical Twinning and Tensile Properties of a High Mn Twinning-Induced Plasticity Steel.” Material Transaction of Japan Institute of Metals 53 (12): 2187–90.

    Article  Google Scholar 

  • Kim, J.-K., L. Chen, H.-S. Kim, and S.-K. Kim. 2009. “On the Tensile Behavior of High Manganese Twinning-Induced Plasticity Steels.” Metallurgical and Materials Transactions 40 (13): 3147–58.

    Article  Google Scholar 

  • Kim, J., I. Choi, and Y.K. Lee. 2011a. “Twin Formation in Strain-Controlled Lean Mn TWIP Steels.” In HMnS – 2011. Seoul, South Korea.

    Google Scholar 

  • Kim, J., S.-J. Lee, and B.C. De Cooman. 2011b. “Effect of Al on the Stacking Fault Energy of the Fe-18Mn-0.6C Twinning-Induced Plasticity.” Scripta Materialia 65 (4): 363–66.

    Article  Google Scholar 

  • Kim, Y., N. Kang, Y. Park, I. Choi, and G. Kim. 2008. “Effect of the Strain Induced Martensite Transformation on the Delayed Fracture for Al-Added TWIP Steel.” Journal of the Korean Institute of Metals and Materials 46: 780–87.

    Google Scholar 

  • Koyama, M., E. Anelli, T. Sawaguchi, and D. Raabe. 2012. “Hydrogen-Induced Cracking at Grain and Twin Boundaries in an Fe–Mn–C Austenitic Steel.” Scripta Materialia 66 (7): 469–462.

    Article  Google Scholar 

  • Koyama, M., T. Sawaguchi, T. Lee, C.S. Lee, and K. Tsuzaki. 2011a. “Work Hardening Associated with E-Martensitic Transformation, Deformation Twinning and Dynamic Strain Ageing in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels.” Material Science and Engineering A 528: 7310–16.

    Article  Google Scholar 

  • Koyama, M., T. Sawaguchi, and K. Tsuzaki. 2011b. “Effect of Deformation Temperature on Work Hardening Behavior in Fe-17Mn-0.6C and Fe-17Mn-0.8C Steels.” In HMnS – 2011. Seoul, South Korea.

    Google Scholar 

  • Kwon, O. 2011. “Development of High Performance High Manganese TWIP Steels in POSCO.” In HiMnS – 2011. Seoul, Korea.

    Google Scholar 

  • Kwon, O., K. Lee, G. Kim, and K.G. Chin. 2010. “New Trends in Advanced High Strength Development for Automotive Applications.” Material Science Forum 638–642: 136–41.

    Article  Google Scholar 

  • Lee, K.Y., S.K. Kim, J.-H. Kwak, Y.R. Cho, and S.D. Choo. 2014. “Recent Development of Automotive Sheet Steels.” In Materials on Car Body Engineering. Bad Nauheim.

    Google Scholar 

  • Liu, F., W.J. Dan, and Zhang W.G. 2015. “Strain Hardening Model of Twinning Induced Plasticity Steel at Different Temperatures.” Materials and Design 65: 737–42.

    Article  Google Scholar 

  • Millard, B., B. Remy, C. Scott, and A. Deschamps. 2012. “Hydrogen Trapping by VC Precipitates and Structural Defects in a High Strength Fe-Mn-C Steel Studied by Small-Angle Neutron Scattering.” Material Science and Engineering A 536: 110–16.

    Article  Google Scholar 

  • Neu, R.W. 2013. “Performance and Characterization of TWIP Steels for Automotive Applications.” Materials Performance and Characterizations 2 (1): 244–84.

    Google Scholar 

  • Park, K.T., K.-G. Jin, S.H. Han, and S.W. Hwang. 2010. “Stacking Fault Energy and Plastic Deformation of Fully Austenitic Manganese Steels: Effect of Al Addition.” Material Science and Engineering A 527: 3651–61.

    Article  Google Scholar 

  • Qian, L., P. Guo, J. Meng, and F. Zhang. 2013. “Unusual Grain-Size and Strain-Rate Effects on the Serrated Flow in FeMnC Twin-Induced Plasticity Steels.” Journal of Material Science 48: 1669–74.

    Google Scholar 

  • Remy, L. 1978. “Kinetics of F.c.c. Deformation Twinning and Its Relationship to Stress-Strain Behavior.” Acta Metallurgica 26 (3): 443–51.

    Article  Google Scholar 

  • Reyes-Calderón, F., I. Mejía, C. Bedolla-Jacuinde, and J. Calvo. 2011. “Effect of Microalloying Elements (B, Nb, and V) on Solution Heat Treatment Microstructure of Fe-Mn-Al-Si-C TWIP Steels.” In HmnS-2011. Seoul, South Korea.

    Google Scholar 

  • Ryu, J.H. 2012. “Hydrogen Embrittlement in TRIP and TWIP Steels.” Ph.D., Pohang, South Korea: Pohang University of Science and Technology.

    Google Scholar 

  • Scott, C., N. Guelton, S. Allain, and M. Faral. 2005. “The Development of a New Fe-Mn-C Austenitic Steel for Automotive Applications.” In Material Science and Technology, 2:127–38.

    Google Scholar 

  • Scott, C., B. Remy, J.L. Collet, and A. Cael. 2011. “Precipitation Strengthening in High Manganese Austenitic TWIP Steels.” International Journal of Materials Research 102 (5): 538–49.

    Article  Google Scholar 

  • Sevillano, G. 2009. “An Alternative Model for the Strain Hardening of FCC Alloys That Twin, Validated for Twinning-Induced Plasticity Steel.” Scripta Materialia 60: 336.

    Article  Google Scholar 

  • Yakubtsov, I.A., A. Airapour, and Perovic. 1999. “Effect of Nitrogen on Stacking Fault Energy of FCC Iron-Based Alloys.” Acta Materialia 47: 1271.

    Google Scholar 

  • Yen, H.-W., M. Huang, C.P. Scott, and J.R. Yang. 2012. “Interactions between Deformation-Induced Defects and Carbides in a Vanadium-Containing TWP Steel.” Scripta Materialia 66: 1018–23.

    Article  Google Scholar 

  • Yoo, J.D., S.W. Hwang, and K.T. Park. 2009. “Factors Influencing Tensile Behavior of a Fe-28Mn-9Al-0.8C Steel.” Material Science and Engineering A 508: 234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fonstein, N. (2015). Austenitic Steels with TWIP Effect. In: Advanced High Strength Sheet Steels. Springer, Cham. https://doi.org/10.1007/978-3-319-19165-2_11

Download citation

Publish with us

Policies and ethics