Skip to main content
Book cover

Geopedology pp 127–163Cite as

The Geomorphic Landscape: The Attributes of Geoforms

  • Chapter
  • 1925 Accesses

Abstract

Attributes are characteristics used for the description, identification, and classification of the geoforms. They are descriptive and functional indicators that make the multicategorial system of the geoforms operational. Four kinds of attribute are used: (1) morphographic attributes to describe the geometry of geoforms; (2) morphometric attributes to measure the dimensions of geoforms; (3) morphogenic attributes to determine the origin and evolution of geoforms; and (4) morphochronologic attributes to frame the time span in which geoforms originated. The morphometric and morphographic attributes apply mainly to the external (epigeal) component of the geoforms, are essentially descriptive, and can be extracted from remote-sensed documents or derived from digital elevation models. The morphogenic and morphochronologic attributes apply mostly to the internal (hypogeal) component of the geoforms, are characterized by field observations and measurements, and need to be substantiated by laboratory determinations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ASP (1960) Manual of photographic interpretation. American Society of Photogrammetry, Washington

    Google Scholar 

  • Busacca AJ (1987) Pedogenesis of a chronosequence in the Sacramento Valley, California. USA. I Application of a soil development index. Geoderma 41:123–148

    Article  Google Scholar 

  • Butler BE (1959) Periodic phenomena in landscapes as a basis for soil studies, Soil publication 14. CSIRO, Melbourne

    Google Scholar 

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, Cambridge

    Google Scholar 

  • del Valle HF, Blanco PD, Metternicht GI, Zinck JA (2010) Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia. J Environ Qual 39:62–75

    Article  Google Scholar 

  • EPICA (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628

    Article  Google Scholar 

  • Erhart H (1956) La genèse des sols en tant que phénomène géologique. Masson, Paris

    Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Fridland VM (1965) Makeup of the soil cover. Sov Soil Sci 4:343–354

    Google Scholar 

  • Fridland VM (1974) Structure of the soil mantle. Geoderma 12:35–41

    Article  Google Scholar 

  • Fridland VM (1976) Pattern of the soil cover. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Gallant JC, Hutchinson MF (2008) Digital terrain analysis. In: McKenzie NJ, Grundy MJ, Webster R, Ringrose-Voase AJ (eds) Guidelines for surveying soil and land resources, vol 2, 2nd edn, Australian soil and land survey handbook series. CSIRO, Melbourne, pp 75–91

    Google Scholar 

  • Harden JW (1982) A quantitative index of soil development from field descriptions: examples from a chronosequence in Central California. Geoderma 28(1):1–28

    Article  Google Scholar 

  • Harden JW (1990) Soil development on stable landforms and implications for landscape studies. Geomorphology 3:391–398

    Article  Google Scholar 

  • Harden JW, Taylor EM, Hill C (1991) Rates of soil development from four soil chronosequences in the southern Great Basin. Quat Res 35:383–399

    Article  Google Scholar 

  • Hengl T (2003) Pedometric mapping. Bridging the gaps between conventional and pedometric approaches. ITC dissertation 101. Enschede, The Netherlands

    Google Scholar 

  • Hole FD, Campbell JB (1985) Soil landscape analysis. Rowman & Allanheld, Totowa

    Google Scholar 

  • Hubschman J (1975) Morphogenèse et pédogenèse quaternaires dans le piémont des Pyrénées garonnaises et ariégoises. Thèse de Doctorat, Université de Toulouse-Le-Mirail, Toulouse

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Jenny H (1980) The soil resource. Origin and behaviour, vol 37, Ecological studies. Springer, New York

    Book  Google Scholar 

  • Kellogg CE (1959) Soil classification and correlation in the soil survey. USDA, Soil Conservation Service, Washington

    Google Scholar 

  • Meijerink A (1988) Data acquisition and data capture through terrain mapping units. ITC J 1988(1):23–44

    Google Scholar 

  • Metternicht G, Zinck JA (1997) Spatial discrimination of salt- and sodium-affected soil surfaces. Int J Remote Sens 18(12):2571–2586

    Article  Google Scholar 

  • Metternicht GI, Zinck JA (2003) Remote sensing of soil salinity: potentials and constraints. Remote Sens Environ 85:1–20

    Article  Google Scholar 

  • Metternicht G, Zinck JA, Blanco PD, del Valle HF (2010) Remote sensing of land degradation: experiences from Latin America and the Caribbean. J Environ Qual 39:42–61

    Article  Google Scholar 

  • Millot G (1964) Géologie des argiles. Altérations, sédimentologie, géochimie. Masson, Paris

    Google Scholar 

  • NACSN (2005) North american stratigraphic code. North American Commission on Stratigraphic Nomenclature. AAPG Bull 89(11):1547–1591

    Article  Google Scholar 

  • Olaya V (2009) Basic land-surface parameters. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, vol 33, Developments in soil science. Elsevier, Amsterdam, pp 141–169

    Chapter  Google Scholar 

  • Penck A, Brückner E (1909) Die Alpen im Eiszeitalter. Tauchnitz CH, Leipzig

    Google Scholar 

  • Pérez-Materán J (1967) Informe de levantamiento de suelos, río Santo Domingo, Venezuela. Ministerio de Obras Públicas (MOP), Caracas

    Google Scholar 

  • Pike RJ (1995) Geomorphometry: progress, practice, and prospect. Z Geomorphol Suppl 101:221–238

    Google Scholar 

  • Pike RJ, Dikau R (eds) (1995) Advances in geomorphometry. Proceedings of the Walter F. Wood memorial symposium. Zeitschrift für Geomorphologie Supplementband 101

    Google Scholar 

  • Rivière A (1952) Expression analytique générale de la granulométrie des sédiments meubles. Indices caractéristiques et interprétation géologique. Notion du faciès granulométrique. Bul Soc Géol de France, 6è Série(II):156–167

    Google Scholar 

  • Ruhe RV (1975) Geomorphology. Geomorphic processes and surficial geology. Houghton Mifflin, Boston

    Google Scholar 

  • Saldaña A, Ibáñez JJ, Zinck JA (2011) Soilscape analysis at different scales using pattern indices in the Jarama-Henares interfluve and Henares River valley, Central Spain. Geomorphology 135:284–294

    Article  Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys, USDA agriculture handbook 436. US Government Printing Office, Washington, DC

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy, USDA agriculture handbook 436. US Government Printing Office, Washington, DC

    Google Scholar 

  • Tricart J (1965a) Principes et méthodes de la géomorphologie. Masson, Paris

    Google Scholar 

  • Tricart J (1965b) Morphogenèse et pédogenèse. I Approche méthodologique: géomorphologie et pédologie. Science du Sol 1:69–85

    Google Scholar 

  • USDA (1971) Guide for interpreting engineering uses of soils. USDA, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Wulf H, Mulder T, Schaepman ME, Keller A, Jörg PhC (2015) Remote sensing of soils: project report from the Federal Office of the Environment (FOEN/BAFU). University of Zurich

    Google Scholar 

  • Zinck JA (1988) Physiography and soils, ITC soil survey lecture notes. International Institute for Aerospace Survey and Earth Sciences, Enschede

    Google Scholar 

  • Zinck JA, Urriola PL (1970) Origen y evolución de la Formación Mesa. Un enfoque edafológico. Ministerio de Obras Públicas (MOP), Barcelona

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Zinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zinck, J.A. (2016). The Geomorphic Landscape: The Attributes of Geoforms. In: Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F. (eds) Geopedology. Springer, Cham. https://doi.org/10.1007/978-3-319-19159-1_8

Download citation

Publish with us

Policies and ethics