Skip to main content

The Geomorphic Landscape: Criteria for Classifying Geoforms

  • Chapter
Geopedology

Abstract

Combining the basic criteria to build a taxonomic system with the hierarchic arrangement of the geomorphic environment determines a structure of nested categorial levels. Five of these levels are essentially deduced from the epigeal physiographic expression of the geoforms. To substantiate the relationship between geoform and soil, it is necessary to introduce in the system information on the internal hypogeal component of the geoforms, namely the constituent material, which is in turn the parent material of the soils. As a result of the foregoing, an additional level is needed to document the lithology in the case of bedrock substratum or the facies in the case of unconsolidated cover materials. This leads finally to a system with six categorial levels, identified by their respective generic concepts, including from upper to lower level: geostructure, morphogenic environment, geomorphic landscape, relief/molding, lithology/facies, and the basic landform or terrain form. Such a system with six categories complies with Miller’s Law, which postulates that the capacity of the human mind to process information covers a range of seven plus or minus two elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold R (1968) Apuntes de agrología (documento inédito). Ministerio de Obras Públicas (MOP), Barquisimeto

    Google Scholar 

  • Barrera-Bassols N, Zinck JA, Van Ranst E (2006) Local soil classification and comparison of indigenous and technical soil maps in a Mesoamerican community using spatial analysis. Geoderma 135:140–162

    Article  Google Scholar 

  • Barrera-Bassols N, Zinck JA, Van Ranst E (2009) Participatory soil survey: experience in working with a Mesoamerican indigenous community. Soil Use Manage 25:43–56

    Article  Google Scholar 

  • Buol SW, Hole FD, McCracken RJ, Southard RJ (1997) Soil genesis and classification, 4th edn. Iowa State University Press, Ames

    Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford

    Google Scholar 

  • Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Set Syst 113:37–52

    Article  Google Scholar 

  • CNRS (1972) Cartographie géomorphologique. Travaux de la RCP77. Mémoires et Documents, vol 12. Editions du Centre National de la Recherche Scientifique, Paris

    Google Scholar 

  • Conacher AJ, Dalrymple JB (1977) The nine-unit landscape model: an approach to pedogeomorphic research. Geoderma 18:1–154

    Article  Google Scholar 

  • de Bruin S, Wielemaker WG, Molenaar M (1999) Formalisation of soil-landscape knowledge through interactive hierarchical disaggregation. Geoderma 91:151–172

    Article  Google Scholar 

  • Derruau M (1965) Précis de géomorphologie. Masson, Paris

    Google Scholar 

  • Derruau M (1966) Geomorfología. Ediciones Ariel, Barcelona

    Google Scholar 

  • Dobos E, Micheli E, Baumgardner MF, Biehl L, Helt T (2000) Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 97(3–4):367–391

    Article  Google Scholar 

  • Elizalde G (2009) Ensayo de clasificación sistemática de categorías de paisajes. Primera aproximación, edn revisada. Maracay, Venezuela

    Google Scholar 

  • Evans IS, Hengl T, Gorsevski P (2009) Applications in geomorphology. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, vol 33, Developments in Soil Science. Elsevier, Amsterdam, pp 497–525

    Chapter  Google Scholar 

  • Fairbridge RW (ed) (1997) Encyclopedia of geomorphology. Springer, New York

    Google Scholar 

  • FAO (2006) Guidelines for soil description, 4th edn. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2009) Guía para la descripción de suelos, cuarta edn. Organización de las Naciones Unidas para la Agricultura y la Alimentación, Roma

    Google Scholar 

  • Farshad A (2010) Geopedology. An introduction to soil survey, with emphasis on profile description (CD-ROM). University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), Enschede

    Google Scholar 

  • Gallant JC, Wilson JP (2000) Primary topographic attributes. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 51–85

    Google Scholar 

  • Garner HF (1974) The origin of landscapes. A synthesis of geomorphology. Oxford University Press, New York

    Google Scholar 

  • Goosen D (1968) Interpretación de fotos aéreas y su importancia en levantamiento de suelos. Boletín de Suelos 6. FAO, Roma

    Google Scholar 

  • Goudie AS (ed) (2004) Encyclopedia of geomorphology, vol 2. Routledge, London

    Google Scholar 

  • Haigh MJ (1987) The holon: hierarchy theory and landscape research, Catena Supplement 10. CATENA Verlag, Cremlingen, pp 181–192

    Google Scholar 

  • Hengl T, MacMillan RA (2009) Geomorphometry: a key to landscape mapping and modelling. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, Developments in Soil Science 33. Elsevier, Amsterdam, pp 433–460

    Chapter  Google Scholar 

  • Hengl T, Reuter HI (eds) (2009) Geomorphometry: concepts, software, applications, Developments in soil science 33. Elsevier, Amsterdam

    Google Scholar 

  • Huggett RJ (2011) Fundamentals of geomorphology. Routledge, London

    Google Scholar 

  • Hutchinson MF, Gallant JC (2000) Digital elevation models and representation of terrain shape. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 29–50

    Google Scholar 

  • Irwin BJ, Ventura SJ, Slater BK (1997) Fuzzy and isodata classification of landform elements from digital terrain data in Pleasant Valley, Wisconsin. Geoderma 77:137–154

    Article  Google Scholar 

  • Iwahashi J, Pike RJ (2007) Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 86(3–4):409–440

    Article  Google Scholar 

  • Lueder DR (1959) Aerial photographic interpretation: principles and applications. McGraw-Hill, New York

    Google Scholar 

  • Lugo-Hubp J (ed) (1989) Diccionario geomorfológico. Universidad Nacional Autónoma de México, Cd México

    Google Scholar 

  • MacMillan RA, Pettapiece WW (1997) Soil landscape models: automated landscape characterization and generation of soil-landscape models, Research report 1E. Agriculture and Agri-Food Canada, Lethbridge

    Google Scholar 

  • MacMillan RA, Shary PA (2009) Landforms and landform elements in geomorphometry. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, Developments in soil science 33. Elsevier, Amsterdam, pp 227–254

    Chapter  Google Scholar 

  • MacMillan RA, Pettapiece WW, Nolan SC, Goddard TW (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Set Syst 113:81–109

    Article  Google Scholar 

  • Meybeck M, Green P, Vorosmarty CJ (2001) A new typology for mountains and other relief classes: an application to global continental water resources and population distribution. Mt Res Dev 21:34–45

    Article  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97

    Article  Google Scholar 

  • Miller GA (2003) The cognitive revolution: a historical perspective. Trends Cogn Sci 7(3):141–144

    Article  Google Scholar 

  • Minár J, Evans IS (2008) Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95:236–259

    Article  Google Scholar 

  • Nelson A, Reuter H (2012) Soil projects. Landform classification from EU Joint Research Center, Institute for Environment and Sustainability. http://eusoils.jrc.ec.europa.eu/projects/landform/

  • Olaya V (2009) Basic land-surface parameters. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, Developments in soil science 33. Elsevier, Amsterdam, pp 141–169

    Chapter  Google Scholar 

  • Pennock DJ, Zebarth BJ, De Jong E (1987) Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma 40:297–315

    Article  Google Scholar 

  • Pike RJ, Dikau R (eds) (1995) Advances in geomorphometry. Proceedings of the Walter F. Wood memorial symposium. Zeitschrift für Geomorphologie Supplementband 101

    Google Scholar 

  • Pike RJ, Evans IS, Hengl T (2009) Geomorphometry: a brief guide. In: Hengl T, Reuter HI (eds) Geomorphometry: concepts, software, applications, Developments in soil science 33. Elsevier, Amsterdam, pp 3–30

    Chapter  Google Scholar 

  • Ruhe RV (1975) Geomorphology. Geomorphic processes and surficial geology. Houghton Mifflin, Boston

    Google Scholar 

  • Sharif M, Zinck JA (1996) Terrain morphology modelling. Int Arch Photogramm Remote Sens XXXI(Part B3):792–797

    Google Scholar 

  • Small RJ (1970) The study of landforms. A textbook of geomorphology. Cambridge University Press, London

    Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. USDA agriculture handbook 436. US Government Printing Office, Washington, DC

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy. USDA Agric Handbook 436. US Gov Print Of, Washington

    Google Scholar 

  • Thornbury WD (1966) Principios de geomorfología. Editorial Kapelusz, Buenos Aires

    Google Scholar 

  • Tricart J (1965) Principes et méthodes de la géomorphologie. Masson, Paris

    Google Scholar 

  • Tricart J (1968) Précis de géomorphologie. T1 Géomorphologie structurale. SEDES, Paris

    Google Scholar 

  • Tricart J (1977) Précis de géomorphologie. T2 Géomorphologie dynamique générale. SEDES-CDU, Paris

    Google Scholar 

  • Tricart J, Cailleux A (1962) Le modelé glaciaire et nival. SEDES, Paris

    Google Scholar 

  • Tricart J, Cailleux A (1965) Le modelé des régions chaudes. Forêts et savanes. SEDES, Paris

    Google Scholar 

  • Tricart J, Cailleux A (1967) Le modelé des régions périglaciaires. SEDES, Paris

    Google Scholar 

  • Tricart J, Cailleux A (1969) Le modelé des régions sèches. SEDES, Paris

    Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH Jr (1987) Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. BioScience 37(2):119–127

    Article  Google Scholar 

  • Van Zuidam RA (1985) Aerial photo-interpretation in terrain analysis and geomorphological mapping. ITC, Enschede

    Google Scholar 

  • Ventura SJ, Irvin BJ (2000) Automated landform classification methods for soil-landscape studies. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and applications. Wiley, New York, pp 267–294

    Google Scholar 

  • Verstappen HT (1983) Applied geomorphology; geomorphological survey for environmental development. Elsevier, Amsterdam

    Google Scholar 

  • Verstappen HT, Van Zuidam RA (1975) ITC system of geomorphological survey. ITC, Enschede

    Google Scholar 

  • Viers G (1967) Eléments de géomorphologie. Nathan, Paris

    Google Scholar 

  • Visser WA (ed) (1980) Geological nomenclature. Royal geological and mining society of the Netherlands. Bohn, Scheltema & Holkema, Utrecht

    Google Scholar 

  • Way DS (1973) Terrain analysis. A guide to site selection using aerial photographic interpretation. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania

    Google Scholar 

  • Wielemaker WG, de Bruin S, Epema GF, Veldkamp A (2001) Significance and application of the multi-hierarchical landsystem in soil mapping. Catena 43:15–34

    Article  Google Scholar 

  • Zinck JA (1974) Definición del ambiente geomorfológico con fines de descripción de suelos. Ministerio de Obras Públicas (MOP), Cagua

    Google Scholar 

  • Zinck JA (1980) Valles de Venezuela. Lagoven, Petróleos de Venezuela, Caracas

    Google Scholar 

  • Zinck JA (1988) Physiography and soils, ITC soil survey lecture notes. International Institute for Aerospace Survey and Earth Sciences, Enschede

    Google Scholar 

  • Zinck JA, Valenzuela CR (1990) Soil geographic database: structure and application examples. ITC J 1990(3):270–294

    Google Scholar 

  • Zonneveld JIS (1979) Land evaluation and land(scape) science. ITC, Enschede

    Google Scholar 

  • Zonneveld JIS (1989) The land unit – a fundamental concept in landscape ecology, and its applications. Landsc Ecol 3(2):67–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Zinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zinck, J.A. (2016). The Geomorphic Landscape: Criteria for Classifying Geoforms. In: Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F. (eds) Geopedology. Springer, Cham. https://doi.org/10.1007/978-3-319-19159-1_6

Download citation

Publish with us

Policies and ethics