Skip to main content

The Geopedologic Approach

  • Chapter

Abstract

The relationships between geomorphology and pedology can be analyzed from different perspectives: conceptual, methodological, and operational. Geopedology (1) is based on the conceptual relationships between geoform and soil which center on the earth’s epidermal interface, (2) is implemented using a variety of methodological modalities based on the three-dimensional concept of the geopedologic landscape, and (3) becomes operational primarily within the framework of soil inventory, which can be represented by a hierarchic scheme of activities. The approach focuses on the reading of the landscape in the field and from remote-sensed imagery to identify and classify geoforms, as a prelude to their mapping along with the soils they enclose and the interpretation of the genetic relationships between soils and geoforms. There is explicit emphasis on the geomorphic context as an essential factor of soil formation and distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amiotti N, Blanco MC, Sanchez LF (2001) Complex pedogenesis related to differential aeolian sedimentation in microenvironments of the southern part of the semiarid region of Argentina. Catena 43:137–156

    Article  Google Scholar 

  • Arnold R, Schargel R (1978) Importance of geographic soil variability at scales of about 1: 25,000. Venezuelan examples. In: Drosdoff M, Daniels RB, Nicholaides III JJ (eds) Diversity of soils in the tropics. ASA special publication, 34. ASA, Madison, pp 45–66

    Google Scholar 

  • Bocco G, Velázquez A, Mendoza ME, Torres MA, Torres A (1996) Informe final, subproyecto regionalización ecológica, proyecto de actualización del ordenamiento ecológico general del territorio del país. INE-SEMARNAP, México

    Google Scholar 

  • Bregt AK, Bouma J, Jellineck M (1987) Comparison of thematic maps derived from a soil map and from kriging of point data. Geoderma 39:281–291

    Article  Google Scholar 

  • Buol SW, Hole FD, McCracken RJ, Southard RJ (1997) Soil genesis and classification, 4th edn. Iowa State University Press, Ames

    Google Scholar 

  • Campy M, Macaire JJ (1989) Géologie des formations superficielles. Géodynamique, faciès, utilisation. Masson, Paris

    Google Scholar 

  • Esfandiarpoor Borujeni I, Salehi MH, Toomanian N, Mohammadi J, Poch RM (2009) The effect of survey density on the results of geopedological approach in soil mapping: a case study in the Borujen region, Central Iran. Catena 79:18–26

    Article  Google Scholar 

  • Esfandiarpoor Borujeni I, Mohammadi J, Salehi MH, Toomanian N, Poch RM (2010) Assessing geopedological soil mapping approach by statistical and geostatistical methods: a case study in the Borujen region, Central Iran. Catena 82:1–14

    Article  Google Scholar 

  • Farshad A, Shrestha DP, Moonjun R (2013) Do the emerging methods of digital soil mapping have anything to learn from the geopedologic approach to soil mapping or vice versa? In: Shahid SA, Taha FK, Abdelfattah MA (eds) Developments in soil classification, land use planning and policy implications: innovative thinking of soil inventory for land use planning and management of land resources. Springer, Dordrecht, pp 109–131

    Chapter  Google Scholar 

  • Fridland VM (1974) Structure of the soil mantle. Geoderma 12:35–41

    Article  Google Scholar 

  • Fridland VM (1976) Pattern of the soil cover. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Hall GF, Olson CG (1991) Predicting variability of soils from landscape models. In: Mausbach MJ, Wilding LP (eds) Spatial variabilities of soils and landforms. SSSA Special Publication, 28. SSSA, Madison, pp 9–24

    Google Scholar 

  • Hengl T (2003) Pedometric mapping. Bridging the gaps between conventional and pedometric approaches. ITC dissertation 101, Enschede, The Netherlands

    Google Scholar 

  • Hengl T, Rossiter DG (2003) Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey. Soil Sci Soc Am J 67:1810–1822

    Article  Google Scholar 

  • Hole FD, Campbell JB (1985) Soil landscape analysis. Rowman & Allanheld, Totowa

    Google Scholar 

  • Hole FD, Hironaka M (1960) An experiment in ordination of some soil profiles. Soil Sci Soc Am Proc 24(4):309–312

    Article  Google Scholar 

  • Hudson BD (1992) The soil survey as paradigm-based science. Soil Sci Soc Am J 56:836–841

    Article  Google Scholar 

  • Ibáñez JJ (1994) Evolution of fluvial dissection landscapes in Mediterranean environments: quantitative estimates and geomorphic, pedologic and phytocenotic repercussions. Z Geomorphol 38:105–119

    Google Scholar 

  • IUSS (2007) World reference base for soil resources. World soil resources report 103. IUSS Working Group WRB/FAO, Rome

    Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York

    Google Scholar 

  • Kerry R, Oliver MA (2011) Soil geomorphology: identifying relations between the scale of spatial variation and soil processes using the variogram. Geomorphology 130:40–54

    Article  Google Scholar 

  • McBratney AB, de Gruijter JJ, Brus DJ (1992) Spatial prediction and mapping of continuous soil classes. Geoderma 54:39–64

    Article  Google Scholar 

  • McKenzie NJ, Gessler PE, Ryan PJ, O’Connell DA (2000) The role of terrain analysis in soil mapping. In: Wilson JP, Gallant JC (eds) Terrain analysis. Principles and applications. Wiley, New York, pp 245–265

    Google Scholar 

  • Metternicht G, Zinck JA (1997) Spatial discrimination of salt- and sodium-affected soil surfaces. Intl J Remote Sens 18(12):2571–2586

    Article  Google Scholar 

  • Moonjun R, Farshad A, Shrestha DP, Vaiphasa C (2010) Artificial neural network and decision tree in predictive soil mapping of Hoi Num Rin sub-watershed, Thailand. In: Boettinger JL, Howell DW, Moore AC, Hartemink AE, Kienast-Brown S (eds) Digital soil mapping: bridging research, environmental application, and operation. Springer, New York, pp 151–163

    Chapter  Google Scholar 

  • Pennock DJ, Corre MD (2001) Development and application of landform segmentation procedures. Soil Tillage Res 58:151–162

    Article  Google Scholar 

  • Phillips JD (2001) Divergent evolution and the spatial structure of soil landscape variability. Catena 43:101–113

    Article  Google Scholar 

  • Principi P (1953) Geopedologia (Geologia Pedologica). Studio dei terreni naturali ed agrari. Ramo Editoriale degli Agricoltori, Roma

    Google Scholar 

  • Rossiter DG (2000) Methodology for soil resource inventories. Lecture notes, 2nd revised version. International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede, The Netherlands

    Google Scholar 

  • Saldaña A, Stein A, Zinck JA (1998) Spatial variability of soil properties at different scales within three terraces of the Henares valley (Spain). Catena 33:139–153

    Article  Google Scholar 

  • Saldaña A, Ibáñez JJ, Zinck JA (2011) Soilscape analysis at different scales using pattern indices in the Jarama-Henares interfluve and Henares River valley, Central Spain. Geomorphology 135:284–294

    Article  Google Scholar 

  • Salgado-Labouriau ML (1980) A pollen diagram of the Pleistocene-Holocene boundary of Lake Valencia, Venezuela. Rev Palaeobot Palynol 30:297–312

    Article  Google Scholar 

  • Schlichting E (1970) Bodensystematik und bodensoziologie. Z Pflanzenernähr Bodenk 127(1):1–9

    Article  Google Scholar 

  • Soil Survey Staff (1960) Soil classification: a comprehensive system. 7th approximation. US Government Printing Office, Washington

    Google Scholar 

  • Soil Survey Staff (1967) Supplement to soil classification system (7th approximation). US Soil Conservation Service, Washington

    Google Scholar 

  • Soil Survey Staff (1993) Soil survey manual. US Department of Agriculture handbook 18. US Government Printing Office, Washington, DC

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy. US Department of Agriculture handbook 436. US Government Printing Office, Washington, DC

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Toomanian N (2013) Pedodiversity and landforms. In: Ibáñez JJ, Bockheim J (eds) Pedodiversity. CRC Press/Taylor & Francis Group, Boca Raton, pp 133–152

    Google Scholar 

  • Tricart J (1972) La terre, planète vivante. Presses Universitaires de France, Paris

    Google Scholar 

  • Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy. I concepts and interactions. Elsevier, Amsterdam, pp 83–116

    Chapter  Google Scholar 

  • Wilding LP, Lin H (2006) Advancing the frontiers of soil science towards a geoscience. Geoderma 131:257–274

    Article  Google Scholar 

  • Zinck JA (1970) Aplicación de la geomorfología al levantamiento de suelos en zonas aluviales. Ministerio de Obras Públicas (MOP), Barcelona

    Google Scholar 

  • Zinck JA (1972) Ensayo de clasificación numérica de algunos suelos del Valle Guarapiche, Estado Monagas, Venezuela. IV Congreso Latinoamericano de la Ciencia del Suelo (resumen). Maracay

    Google Scholar 

  • Zinck JA (1974) Definición del ambiente geomorfológico con fines de descripción de suelos. Ministerio de Obras Públicas (MOP), Cagua

    Google Scholar 

  • Zinck JA (1977) Ensayo sistémico de organización del levantamiento de suelos. Ministerio del Ambiente y de los Recursos Naturales Renovables (MARNR), Maracay

    Google Scholar 

  • Zinck JA (1986) Una toposecuencia de suelos en el área de Rancho Grande. Dinámica actual e implicaciones paleogeográficas. In: Huber O (ed) La selva nublada de Rancho Grande, Parque Nacional “Henri Pittier”. El ambiente físico, ecología vegetal y anatomía vegetal. Fondo Editorial Acta Científica Venezolana y Seguros Anauco CA, Caracas, pp 67–90

    Google Scholar 

  • Zinck JA (1988) Physiography and soils. Lecture notes. International Institute for Aerospace Survey and Earth Sciences (ITC), Enschede

    Google Scholar 

  • Zinck JA, Urriola PL (1971) Estudio edafológico Valle Guarapiche, Estado Monagas. Ministerio de Obras Públicas (MOP), Barcelona

    Google Scholar 

  • Zinck JA, Valenzuela CR (1990) Soil geographic database: structure and application examples. ITC J 1990(3):270–294

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Zinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zinck, J.A. (2016). The Geopedologic Approach. In: Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F. (eds) Geopedology. Springer, Cham. https://doi.org/10.1007/978-3-319-19159-1_4

Download citation

Publish with us

Policies and ethics