Skip to main content

Antitumor Essential Oils: Progress in Medicinal Chemistry

  • Chapter
  • First Online:
Bioactive Essential Oils and Cancer

Abstract

A few examples of in silico design, synthesis, and antitumor activity of essential oils compounds and derivatives are found in the literature. Essential oils exhibit moderate to low cytotoxicity; therefore, chemical modifications on their constituents have been proposed with the goal to increase the antitumor activity. This chapter introduces successful examples of the use of medicinal chemistry tools applied to essential oils constituents focusing on antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel Bar FM, Khanfar MA, Elnagar AY, Badria FA, Zaghloul AM, Ahmad KF, Sylvester PW, El Sayed KA (2010) Design and pharmacophore modeling of biaryl methyl eugenol analogs as breast cancer invasion inhibitors. Bioorgan Med Chem 18(2):496–507. doi:10.1016/j.bmc.2009.12.019

    Article  CAS  Google Scholar 

  • Banerjee S, Kaseb AO, Wang ZW, Kong DJ, Mohammad M, Padhye S, Sarkar FH, Mohammad RM (2009) Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 69(13):5575–5583. doi:10.1158/0008-5472.Can-08-4235

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Padhye S, Azmi A, Wang ZW, Philip PA, Kucuk O, Sarkar FH, Mohammad RM (2010) Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr Cancer 62(7):938–946. doi 10.1080/01635581.2010.509832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breyer S, Effenberger K, Schobert R (2009) Effects of thymoquinone-fatty acid conjugates on cancer cells. ChemMedChem 4(5):761–768. doi:10.1002/cmdc.200800430

    Article  CAS  PubMed  Google Scholar 

  • Cavalieri E, Mariotto S, Fabrizi C, de Prati AC, Gottardo R, Leone S, Berra LV, Lauro GM, Ciampa AR, Suzuki H (2004) α-bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. Biochem Biophys Res Commun 315(3):589–594. doi: 10.1016/j.bbrc.2004.01.088

    Article  CAS  PubMed  Google Scholar 

  • Chen JJ, Lu M, Jing YK, Dong JH (2006) The synthesis of L-carvone and limonene derivatives with increased antiproliferative effect and activation of ERK pathway in prostate cancer cells. Bioorgan Med Chem 14(19):6539–6547. doi: 10.1016/j.bmc.2006.06.013

    Article  CAS  Google Scholar 

  • Corey EJ, Czakó B, Kürti L (2007) Molecules and medicine. Wiley, New Jersey, p. 272

    Google Scholar 

  • Cormier A, Marchand M, Ravelli RB, Knossow M, Gigant B (2008) Structural insight into the inhibition of tubulin by vinca domain peptide ligands. EMBO Rep 9(11):1101–1106. doi:10.1038/embor.2008.171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Crowell PL, Kennan WS, Haag JD, Ahmad S, Vedejs E, Gould MN (1992) Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene. Carcinogenesis 13(7):1261–1264

    Article  CAS  PubMed  Google Scholar 

  • Crowell PL, Ren ZB, Lin SZ, Vedejs E, Gould MN (1994) Structure–activity-relationships among monoterpene, inhibitors of protein isoprenylation and cell-proliferation. Biochem Pharmacol 47(8):1405–1415. doi: 10.1016/0006-2952(94)90341-7

    Article  CAS  PubMed  Google Scholar 

  • De Sousa DP (2012) Medicinal essential oils: chemical, pharmacological and therapeutic aspects. Nova Science, New York, p. 236

    Google Scholar 

  • Gan FF, Chua YS, Scarmagnani S, Palaniappan P, Franks M, Poobalasingam T, Bradshaw TD, Westwell AD, Hagen T (2009) Structure–activity analysis of 2’-modified cinnamaldehyde analogues as potential anticancer agents. Biochem Biophys Res Commun 387(4):741–747. doi:10.1016/j.bbrc.2009.07.104

    Article  CAS  PubMed  Google Scholar 

  • Groh IAM, Chen C, Lüske C, Cartus AT, Esselen M (2013) Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells. J Nutr Metab 2013:1–10

    Article  Google Scholar 

  • Han DC, Lee MY, Shin KD, Jeon SB, Kim JM, Son KH, Kim HC, Kim HM, Kwon BM (2004) 2’-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J Biol Chem 279(8):6911–6920. doi:10.1074/jbc.M309708200

    Article  CAS  PubMed  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure–brain exposure relationships. J Med Chem 49(26):7559–7583. doi:10.1021/jm060642i

    Article  CAS  PubMed  Google Scholar 

  • Kwon BM, Cho YK, Lee SH, Nam JY, Bok SH, Chun SK, Kim JA, Lee IR (1996) 2’-Hydroxycinnamaldehyde from stem bark of Cinnamomum cassia. Planta Med 62(2):183–184. doi:10.1055/s-2006-957851

    Article  CAS  PubMed  Google Scholar 

  • Liang X-T, Fang W-S (2006) Medicinal chemistry of bioactive natural products. Wiley, New Jersey, p. 480

    Google Scholar 

  • Mahfouz M, El-Dakhakhny M (1960) The isolation of a crystalline active principle from Nigella sativa seeds. J Pharm Sci 1(1):9–19

    CAS  Google Scholar 

  • Mikhova B, Duddeck H, Taskova R, Mitova M, Alipieva K (2004) Oxigenated bisabolane fucosides from Carthamus lanatus L. Z Naturforsch 59c:244–248

    Google Scholar 

  • Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R (2005) A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem 48(24):6107–6116. doi: 10.1021/Jm058275i

    Article  CAS  Google Scholar 

  • Piochon M, Legault J, Gauthier C, Pichette A (2009) Synthesis and cytotoxicity evaluation of natural alpha-bisabolol beta-D-fucopyranoside and analogues. Phytochemistry 70(2):228–236. doi:10.1016/j.phytochem.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  • Pisano M, Pagnan G, Loi M, Mura ME, Tilocca MG, Palmieri G, Fabbri D, Dettori MA, Delogu G, Ponzoni M, Rozzo C (2007) Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer 6:8. doi:10.1186/1476-4598-6-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Taglialatela-Scafati O, Pollastro F, Cicione L, Chianese G, Bellido ML, Munoz E, Ozen HC, Toker Z, Appendino G (2012) STAT-3 Inhibitory Bisabolanes from Carthamus glaucus. J Nat Prod 75(3):453–458. doi: 10.1021/Np2008973

    Article  CAS  PubMed  Google Scholar 

  • Yusufi M, Banerjee S, Mohammad M, Khatal S, Swamy KV, Khan EM, Aboukameel A, Sarkar FH, Padhye S (2013) Synthesis, characterization and anti-tumor activity of novel thymoquinone analogs against pancreatic cancer. Bioorg Med Chem Lett 23(10):3101–3104. doi: 10.1016/j.bmcl.2013.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sócrates Cabral de Holanda Cavalcanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Holanda Cavalcanti, S., de Oliveira, R., de Sousa, D. (2015). Antitumor Essential Oils: Progress in Medicinal Chemistry. In: de Sousa, D. (eds) Bioactive Essential Oils and Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19144-7_5

Download citation

Publish with us

Policies and ethics