Skip to main content

Antitumor Phenylpropanoids

  • Chapter
  • First Online:
Bioactive Essential Oils and Cancer

Abstract

Phenylpropanoids are a class of organic compounds synthesized in plant organisms and is derived from the junction of the phenyl group (aromatic ring) and a three-carbon side chain (propyl group), which is synthesized from phenylalanine in the first step of biosynthesis. The phenylpropanoids are found throughout the plant kingdom, and serve as precursors for a series of natural polymers, which provide protection against ultraviolet light, defense against herbivores and pathogens, and mediate plant–pollinator interactions by pigmentation and floral aroma compounds. In scientific reports, there are diverse biological and/or pharmacological properties attributed to the phenylpropanoids.

In this chapter, data on the antitumor or chemopreventive activities of different phenylpropanoids were described, showing that these substances act by inhibiting or modulating events that occur during or after the tumor development, such as proliferation, angiogenesis, invasion, or cellular death associated or not associated with apoptosis. In the same way, some of these phenylpropanoids also exert stimulatory action on enzymes responsible for metabolizing mutagenic agents or abolish routes of oxidative stress, conditions directly involved in cell transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad H, Valdivia V, Cadena A, Martinez E, Robles B, Patel R, Zapata A, Mancha A, Lai WS, Gelman R, Amro M (2009) Myristicin: inducer of phase-ii drug metabolizing enzymes and prospective chemoprotective agent against cancer. Acta Hort 841:47–54

    CAS  Google Scholar 

  • Almeida VLd, Leitão A, LdCB R, Montanari CA, Donnici CL, Lopes MTP (2005) Câncer e agentes antineoplásicos ciclo-celular específicos e ciclo-celular não específicos que interagem com o DNA: uma introdução. Quím Nova 28:118–129

    Article  Google Scholar 

  • Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001) Reactive oxygen species generation and photo-cytotoxicity of eugenol in solutions of various pH. Biomaterials 22(12):1459–1466. doi:http://dx.doi.org/10.1016/S0142-9612(00)00267-2

    Article  CAS  PubMed  Google Scholar 

  • Atsumi T, Fujisawa S, Tonosaki K (2005) A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol In Vitro 19(8):1025–1033. doi:http://dx.doi.org/10.1016/j.tiv.2005.04.012

    Article  CAS  PubMed  Google Scholar 

  • Babich H, Stern A, Borenfreund E (1993) Eugenol cytotoxicity evaluated with continuous cell lines. Toxicol In Vitro 7(2):105–109

    Article  CAS  PubMed  Google Scholar 

  • Baell JB, Huang DCS (2002) Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem Pharmacol 64(5–6):851–863. doi:http://dx.doi.org/10.1016/S0006-2952(02)01148-6

    Article  CAS  PubMed  Google Scholar 

  • Banchereau J (2008) The agony and the ecstasy of human immunology (Grandeur et servitude de l'immunologie humaine.). Med Sci 24(10):783–786. doi:10.1051/medsci/20082410783

    Google Scholar 

  • Bemani E, Ghanati F, Yousefzadeh Boroujeni L, Khatami F (2012) Antioxidant activity, total phenolics and taxol contents response of Hazel (Corylus avellana L.) cells to benzoic acid and cinnamic acid. Not Bot Hort Agrobot Cluj 40(1):69–73

    Google Scholar 

  • Berg S, Restani P, Boersma M, Delmulle L, Rietjens I (2011) Levels of genotoxic and carcinogenic ingredients in plant food supplements and associated risk assessment. Food Nutri Sci 2(9):989–1010. doi:10.4236/fns.2011.29134

    Article  Google Scholar 

  • Bernard CB, Krishanmurty HG, Chauret D, Durst T, Philogène BJR, Sánchez-Vindas P, Hasbun C, Poveda L, San Román L, Arnason JT (1995) Insecticidal defenses of piperaceae from the neotropics. J Chem Ecol 21(6):801–814. doi:10.1007/BF02033462

    Article  CAS  PubMed  Google Scholar 

  • Borchert P, Wislocki PG, Miller JA, Miller EC (1973a) The metabolism of the naturally occurring hepatocarcinogen safrole to 1'-hydroxysafrole and the electrophilic reactivity of 1'-acetoxysafrole. Cancer Res 33(3):575–589

    CAS  PubMed  Google Scholar 

  • Borchert P, Miller JA, Miller EC, Shires TK (1973b) 1'-Hydroxysafrole, a proximate carcinogenic metabolite of safrole in the rat and mouse. Cancer Res 33(3):590–600

    CAS  PubMed  Google Scholar 

  • Chen CL, Chi CW, Chang Kw, Liu TY (1999) Safrole-like DNA adducts in oral tissue from oral cancer patients with a betel quid chewing history. Carcinogenesis 20:2331–2334

    Google Scholar 

  • Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, Holmgren A, Westwell AD (2010) Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med 48:98–111

    Article  CAS  PubMed  Google Scholar 

  • Chiang SY, Lee PY, Lai MT, Shen LC, Chung WS, Huang HF, Wu KY, Wu HC (2011) Safrole-2', 3'-oxide induces cytotoxic and genotoxic effects in HepG2 cells and in mice. Mutat Res 726:234–241

    Article  CAS  PubMed  Google Scholar 

  • Chuang L-Y, Guh J-Y, Chao LK, Lu Y-C, Hwang J-Y, Yang Y-L, Cheng T-H, Yang W-Y, Chien Y-J, Huang J-S (2012) Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem 133(4):1603–1610. doi:http://dx.doi.org/10.1016/j.foodchem.2012.02.059

    Article  CAS  Google Scholar 

  • Daimon H, Sawada S, Asakura S, Sagami F (1998) In vivo genotoxicity and DNA adduct levels in the liver of rats treated with safrole. Carcinogenesis 19:141–146

    Article  CAS  PubMed  Google Scholar 

  • Dietz BM, Bolton JL (2011) Biological reactive intermediates (BRIs) formed from botanical dietary supplements. Chem-Biol Interact 192:72–80. doi:10.1016/j.cbi.2010.10.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du A, Zhao B, Yin D, Zhang S, Miao J (2006) Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells. Bioorg Med Chem Lett 16:81–83

    Article  CAS  PubMed  Google Scholar 

  • Ekmekcioglu C, Feyertag J, Marktl W (1998) Cinnamic acid inhibits proliferation and modulates brush border membrane enzyme activities in Caco-2 cells. Cancer Lett 128:137–144

    Article  CAS  PubMed  Google Scholar 

  • Fan MJ, Lin SY, Yu CC, Tang NY, Ho HC, Chung HK, Yang JS, Huang JS, Ip SW, Chung JG (2012) Safrole-modulated immune response is mediated through enhancing the CD11b surface marker and stimulating the phagocytosis by macrophages in BALB/c mice. Hum Exp Toxicol 31:898–904

    Article  PubMed  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nature Rev Mol Cell Biol 10:445–457. doi:10.1038/nrm2720

    Article  CAS  Google Scholar 

  • Fujisawa S, Atsumi T, Kadoma Y, Sakagami H (2002) Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity. Toxicology 177(1):39–54. doi:http://dx.doi.org/10.1016/S0300-483×(02)00194–4

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Atsumi T, Ishihara M, Fau-Kadoma Y, Kadoma Y (2004) Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res 24:563–569

    CAS  PubMed  Google Scholar 

  • Ghosh R, Nadiminty N, Fitzpatrick JE, Alworth WL, Slaga TJ, Kumar AP (2005) Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J Biol Chem 280:5812–5819

    Article  CAS  PubMed  Google Scholar 

  • Ghosh R, Ganapathy M, Alworth WL, Chan DC, Kumar AP (2009) Combination of 2-methoxyestradiol (2-ME2) and eugenol for apoptosis induction synergistically in androgen independent prostate cancer cells. J Steroid Biochem Mol Biol 113(1–2):25–35. doi:http://dx.doi.org/10.1016/j.jsbmb.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb OR, Koketsu M, Magalhães MT, Maia JGS, Mendes PH, Rocha AId, Silva MLd, Wilberg VC (1981) Oleos essenciais da amazonia VII. Acta Amaz 11(1):143–148

    CAS  Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40(1):347–369. doi:10.1146/annurev.pp. 40.060189.002023

    Article  CAS  Google Scholar 

  • Hallstrom H, Thuvander A (1997) Toxicological evaluation of myristicin. Nat toxins 5:186–192

    Article  CAS  PubMed  Google Scholar 

  • Hasheminejad G, Caldwell J (1994) Genotoxicity of the alkenylbenzenes alpha- and beta-asarone, myristicin and elimicin as determined by the UDS assay in cultured rat hepatocytes. Food Chem Toxicol 32(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Hemaiswarya S, Doble M (2009) Synergistic interaction of eugenol with antibiotics against gram negative bacteria. Phytomedicine 16(11):997–1005. doi:http://dx.doi.org/10.1016/j.phymed.2009.04.006

    Article  CAS  PubMed  Google Scholar 

  • Hoi-Seon LEE, Sun-Yeou KIM, Chi-Hoon LEE, Young-Joon AHN (2004) Cytotoxic and mutagenic effects of cinnamomum cassia bark-derived materials. J Microb Biot 14(6):1176–1181

    Google Scholar 

  • Hussain A, Brahmbhatt K, Priyani A, Ahmed M, Rizvi TA, Sharma C (2011) Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm 26:519–527

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Priyani A, Sadrieh L, Brahmbhatt K, Ahmed M, Sharma C (2012) Concurrent sulforaphane and eugenol induces differential effects on human cervical cancer cells. Integr Cancer Ther 11(2):154–165. doi:10.1177/1534735411400313

    Article  CAS  PubMed  Google Scholar 

  • Jaafari A, Tilaoui M, Mouse HA, M'Bark LA, Aboufatima R, Chait A, Lepoivre M, Zyad A (2012) Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis. Rev Bras Farmacogn 22:534–540

    Article  CAS  Google Scholar 

  • Jaganathan SK, Supriyanto E (2012) Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17(6):6290–6304

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan SK, Mondhe D, Wani ZA, Pal HC, Mandal M (2010) Effect of honey and eugenol on Ehrlich ascites and solid carcinoma. J Biomed Biotechnol 2010:989163. doi:10.1155/2010/989163

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakoby WB, Habig WH (1980) Glutatione S-transferase, vol. 2. Enzymatic basis of detoxification. New York: Academic Press

    Google Scholar 

  • Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196:143–152

    Article  CAS  PubMed  Google Scholar 

  • Kahlos K, Soini Y, Paakko P, Saily M, Linnainmaa K, Kinnula VL (2010) Proliferation, apoptosis, and manganese superoxide dismutase in malignant mesothelioma. Int J Cancer 88(1):37–43

    Article  Google Scholar 

  • Kaur G, Athar M, Alam MS (2010) Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol Carcinog 49:290–301

    CAS  PubMed  Google Scholar 

  • Kensler TW, Egner PA, Taffe BG, Trush MA (1989) Role of free radicals in tumor promotion and progression. Prog Clin Biol Res 298:233–248

    CAS  PubMed  Google Scholar 

  • Kim SG, Liem A, Stewart BC, Miller JA (1999) New studies on trans-anethole oxide and trans-asarone oxide. Carcinogenesis 20(7):1303–1307

    Article  CAS  PubMed  Google Scholar 

  • Kondo A, Ohigashi H, Murakami A, Suratwadee J, Koshimizu K (1993) l'-Acetoxychavicol acetate as a potent inhibitor of tumor promoter-induced Epstein–Barr virus activation from languas galanga, a traditional thai condiment. Biosci Biotech Biochy 57(8):1344–1345. doi:10.1271/bbb.57.1344

    Article  CAS  Google Scholar 

  • Kruger C, Greten T, Korangy F (2007) Immune based therapies in cancer. Histol Histopathol 22(6):687–696

    CAS  PubMed  Google Scholar 

  • Lee K-G, Shibamoto T (2001) Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem 74(4):443–448. doi:http://dx.doi.org/10.1016/S0308-8146(01)00161-3

    Article  CAS  Google Scholar 

  • Lee BK, Kim JH, Jung JW, Choi JW, Han ES, Lee SH, Ko KH, Ryu JH (2005) Myristicin-induced neurotoxicity in human neuroblastoma SK-N-SH cells. Toxicol Letters 157(1):49–56. doi:http://dx.doi.org/10.1016/j.toxlet.2005.01.012

    Article  CAS  Google Scholar 

  • Liotta LA (1986) Molecular biology of metastases: a review of recent approaches. Eur J Cancer Clin Oncol 22(3):345–348

    Article  CAS  PubMed  Google Scholar 

  • Marshall AD, Caldwell J (1992) Influence of modulators of epoxide metabolism on the cytotoxicity of trans-anethole in freshly isolated rat hepatocytes. Food Chem Toxicol 30(6):467–473

    Article  CAS  PubMed  Google Scholar 

  • Martati E, Boersma MG, Spenkelink A, Khadka DB, van Bladeren PJ, Rietjens IM, Punt A (2012) Physiologically based biokinetic (PBBK) modeling of safrole bioactivation and detoxification in humans as compared with rats. Toxic Sci 128:301–316

    Article  CAS  Google Scholar 

  • Mashima T, Tsuruo T (2005) Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Update 8:339–343

    Article  CAS  Google Scholar 

  • Meng X, Liao S, Wang X, Wang S, Zhao X, Jia P, Pei W, Zheng X, Zheng X (2014) Reversing P-glycoprotein-mediated multidrug resistance in vitro by a-asarone and b-asarone, bioactive cis–trans isomers from Acorus tatarinowii. Biotechnol Lett 36(4):685–691. doi:10.1007/s10529-013-1419-8

    Article  CAS  PubMed  Google Scholar 

  • Moon EY, Lee MR, Wang AG, Lee JH, Kim HC, Kim HM, Kim JM, Kwon BM, Yu DY (2006) Delayed occurrence of H-ras12V-induced hepatocellular carcinoma with long-term treatment with cinnamaldehydes. Eur J Pharmacol 530:270–275

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Suzuki T (2003) Cytotoxic and xenoestrogenic effects via biotransformation of trans-anethole on isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. Biochem Pharmacol 66(1):63–73. doi:10.1016/s0006-2952(03)00208-9

    Article  CAS  PubMed  Google Scholar 

  • Ng LT, Wu SJ (2011) Antiproliferative activity of cinnamomum cassia constituents and effects of pifithrin-alpha on their apoptotic signaling pathways in Hep G2 Cells. Evidence-based complementary and alternative medicine 492148. doi:10.1093/ecam/nep220

    Google Scholar 

  • Noro T, Sekiya T, Kato M, Oka Y, Miyase T, Kuroyanagi M, Ueno A, Fukushima S (1988) Inhibitors of Xanthine Oxidase from Alpinia galanga. Chem Pharm Bull 36:244–248

    Article  CAS  Google Scholar 

  • Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S (2005) Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression by eugenol-related compounds. Anticancer Res 25(0250–7005(Print)):3263–3269

    CAS  PubMed  Google Scholar 

  • Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S (2010) Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci 59:31–39

    Article  CAS  PubMed  Google Scholar 

  • Parise-Filho R, Pasqualoto KFM, Magri FMM, Ferreira AK, da Silva BAVG, Damião MCFCB, Tavares MT, Azevedo RA, Auada AVV, Polli MC, Brandt CA (2012) Dillapiole as antileishmanial agent: discovery, cytotoxic activity and preliminary sar studies of dillapiole analogues. Archiv Der Pharmazie 345(12):934–944. doi:10.1002/ardp.201200212

    Article  CAS  PubMed  Google Scholar 

  • Park BS, Song YS, Yee SB, Lee BG, Seo SY, Park YC, Kim JM, Kim HM, Yoo YH (2005) Phospho-ser 15-p53 translocates into mitochondria and interacts with Bcl-2 and Bcl-xL in eugenol-induced apoptosis. Apoptosis 10(1):193–200. doi:10.1007/s10495-005-6074-7

    Article  CAS  PubMed  Google Scholar 

  • Park C, Kim K, Lee I, Lee S, Choi S, Lee J, Lee K (2011) Phenolic constituents of Acorus gramineus. Arch Pharm Res 34(8):1289–1296. doi:10.1007/s12272-011-0808-6

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Laekeman G, Totte J, Vlietinck AJ, Herman AG (1984) Eugenol and prostaglandin biosynthesis. N Engl J Med 310:50–51

    CAS  PubMed  Google Scholar 

  • Rau KM, Kang HY, Cha TL, Miller SA, Hung MC (2005) The mechanisms and managements of hormone-therapy resistance in breast and prostate cancers. Endocr-Relat Cancer 12(3):511–532. doi:10.1677/erc.1.01026

    Article  CAS  PubMed  Google Scholar 

  • Sawadogo W, Schumacher M, Teiten M-H, Cerella C, Dicato M, Diederich M (2013) A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2011. Molecules 18(4):3641–3673

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Kim JH, Lee SK, Han DC, Son KH, Kim HM, Cheon HG, Kim KR, Sung ND, Lee SJ, Kang SK, Kwon BM (2006) Synthesis and biological evaluation of dimeric cinnamaldehydes as potent antitumor agents. Bioorg Med Chem Lett 14:2498–2506

    Article  CAS  Google Scholar 

  • Sousa PJC, Barros CAL, Rocha JCS, Lira DS, Monteiro GM, Maia JGS (2008) Avaliação toxicológica do óleo essencial de Piper aduncum L. Rev Bras Farmacogn 18:217–221

    Article  CAS  Google Scholar 

  • Stammati A, Bonsi P, Zucco F, Moezelaar R, Alakomi HI, von Wright A (1999) Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food Chem Toxicol 37:813–823

    Google Scholar 

  • Stojcev S, Zolotovitch G, Nachev T, Siljanovska K (1967) Studies on the cytostatic effect of phenols, phenol ethers, furan derivatives and oxides isolated from ether oils. C R Acad Bulg Sci 20(12):1341–1344

    CAS  PubMed  Google Scholar 

  • Thompson D, Norbeck K, Olsson LI, Constantin-Teodosiu D, Van der Zee J, Moldéus P (1989) Peroxidase-catalyzed oxidation of eugenol: formation of a cytotoxic metabolite(s). J Biol Chem 264(2):1016–1021

    CAS  PubMed  Google Scholar 

  • Thompson D, Constantin-Teodosiu D, Egestad B, Mickos H, Moldeus P (1990) Formation of glutathione conjugates during oxidation of eugenol by microsomal fractions of rat liver and lung. Biochem Pharmacol 39:1587–1595

    Article  CAS  PubMed  Google Scholar 

  • Unger P, Melzig MF (2012) Comparative study of the cytotoxicity and genotoxicity of alpha- and beta-asarone. Sci Pharm 80(3):663–668

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 178(26):3831–3852

    Article  Google Scholar 

  • Weinberg F, Chandel N (2009) Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 66(23):3663–3673. doi:10.1007/s00018-009-0099-y

    Article  CAS  PubMed  Google Scholar 

  • Weyemi U, Dupuy C (2012) The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses. Mutat Res 751(2):77–81. doi:10.1016/j.mrrev.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  • Wong MS, Sidik S, Mahmud R, Stanslas J (2013) Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 40(5):307–319. doi:10.1111/1440-1681.12083

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Ng LT, Lin CC (2005) Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci 77:938–951

    Article  CAS  PubMed  Google Scholar 

  • Yu FS, Huang A, Yang JS, Yu CS, Lu CC, Chiang JH, Chiu CF, Chung JG (2012) Safrole induces cell death in human tongue squamous cancer SCC-4 cells through mitochondria-dependent caspase activation cascade apoptotic signaling pathways. Environ Toxicolgy 27:433–444

    Article  CAS  Google Scholar 

  • Zhang JT (2002) New drugs derived from medicinal plants. Therapie 57(2):137–150

    Google Scholar 

  • Zhang JH, Liu L, He YI, Kong WJ, Huang SA (2010) Cytotoxic effect of trans-cinnamaldehyde on human leukemia K562 cells. Acta Pharmacol Sin 31:861–866

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng GQ, Kenney PM, Zhang J, Lam LKT (1992a) Inhibition of benzo[a]pyrene-induced tumorigenesis by myristicin, a volatile aroma constituent of parsley leaf oil. Carcinogenesis 13(10):1921–1923. doi:10.1093/carcin/13.10.1921

    Article  CAS  PubMed  Google Scholar 

  • Zheng GQ, Kenney PM, Lam LKT (1992b) Myristicin: a potential cancer chemopreventive agent from parsley leaf oil. J Agric Food Chem 40(1):107–110. doi:10.1021/jf00013a020

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Teresa Paz Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paz Lopes, M., Dittz Júnior, D., Lemos, F. (2015). Antitumor Phenylpropanoids. In: de Sousa, D. (eds) Bioactive Essential Oils and Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19144-7_10

Download citation

Publish with us

Policies and ethics