Skip to main content

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 104))

  • 681 Accesses

Abstract

In this chapter we study the existence and structure of optimal trajectories of linear control systems with autonomous nonconvex integrands. For these control systems we establish the existence of optimal trajectories over an infinite horizon and show that the turnpike phenomenon holds. We also study the structure of approximate optimal trajectories in regions close to the endpoints of the time intervals. It is shown that in these regions optimal trajectories converge to solutions of the corresponding infinite horizon optimal control problem which depend only on the integrand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artstein Z, Leizarowitz A (1985) Tracking periodic signals with the overtaking criterion. IEEE Trans Autom Control AC-30:1123–1126

    Article  Google Scholar 

  2. Aseev SM, Kryazhimskiy AV (2004) The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons. SIAM J Control Optim 43:1094–1119

    Article  MATH  MathSciNet  Google Scholar 

  3. Aseev SM, Veliov VM (2012) Maximum principle for infinite-horizon optimal control problems with dominating discount. Dyn Continuous Discrete Impuls Syst Ser B 19:43–63

    MATH  MathSciNet  Google Scholar 

  4. Aseev SM, Veliov VM (2012) Necessary optimality conditions for improper infinite-horizon control problems. In: Operations research proceedings, pp 21–26

    Google Scholar 

  5. Aubry S, Le Daeron PY (1983) The discrete Frenkel-Kontorova model and its extensions I. Physica D 8:381–422

    Article  MATH  MathSciNet  Google Scholar 

  6. Baumeister J, Leitao A, Silva GN (2007) On the value function for nonautonomous optimal control problem with infinite horizon. Syst Control Lett 56:188–196

    Article  MATH  MathSciNet  Google Scholar 

  7. Blot J (2009) Infinite-horizon Pontryagin principles without invertibility. J Nonlinear Convex Anal 10:177–189

    MathSciNet  Google Scholar 

  8. Blot J, Cartigny P (2000) Optimality in infinite-horizon variational problems under sign conditions. J Optim Theory Appl 106:411–419

    Article  MATH  MathSciNet  Google Scholar 

  9. Blot J, Hayek N (2000) Sufficient conditions for infinite-horizon calculus of variations problems. ESAIM Control Optim Calc Var 5:279–292

    Article  MATH  MathSciNet  Google Scholar 

  10. Blot J, Hayek N (2014) Infinite-horizon optimal control in the discrete-time framework. SpringerBriefs in optimization. Springer, New York

    Book  MATH  Google Scholar 

  11. Bright I (2012) A reduction of topological infinite-horizon optimization to periodic optimization in a class of compact 2-manifolds. J Math Anal Appl 394:84–101

    Article  MATH  MathSciNet  Google Scholar 

  12. Carlson DA (1990) The existence of catching-up optimal solutions for a class of infinite horizon optimal control problems with time delay. SIAM J Control Optim 28:402–422

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlson DA, Haurie A, Leizarowitz A (1991) Infinite horizon optimal control. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Cartigny P, Michel P (2003) On a sufficient transversality condition for infinite horizon optimal control problems. Automatica J IFAC 39:1007–1010

    Article  MATH  MathSciNet  Google Scholar 

  15. Coleman BD, Marcus M, Mizel VJ (1992) On the thermodynamics of periodic phases. Arch Ration Mech Anal 117:321–347

    Article  MATH  MathSciNet  Google Scholar 

  16. Gaitsgory V, Rossomakhine S, Thatcher N (2012) Approximate solution of the HJB inequality related to the infinite horizon optimal control problem with discounting. Dyn Continuous Discrete Impuls Syst Ser B 19:65–92

    MATH  MathSciNet  Google Scholar 

  17. Gale D (1967) On optimal development in a multi-sector economy. Rev Econ Stud 34:1–18

    Article  MathSciNet  Google Scholar 

  18. Guo X, Hernandez-Lerma O (2005) Zero-sum continuous-time Markov games with unbounded transition and discounted payoff rates. Bernoulli 11:1009–1029

    Article  MATH  MathSciNet  Google Scholar 

  19. Hayek N (2011) Infinite horizon multiobjective optimal control problems in the discrete time case. Optimization 60:509–529

    Article  MATH  MathSciNet  Google Scholar 

  20. Jasso-Fuentes H, Hernandez-Lerma O (2008) Characterizations of overtaking optimality for controlled diffusion processes. Appl Math Optim 57:349–369

    Article  MATH  MathSciNet  Google Scholar 

  21. Kolokoltsov V, Yang W (2012) The turnpike theorems for Markov games. Dyn Games Appl 2:294–312

    Article  MATH  MathSciNet  Google Scholar 

  22. Leizarowitz A (1985) Infinite horizon autonomous systems with unbounded cost. Appl Math Optim 13:19–43

    Article  MATH  MathSciNet  Google Scholar 

  23. Leizarowitz A (1986) Tracking nonperiodic trajectories with the overtaking criterion. Appl Math Optim 14:155–171

    Article  MATH  MathSciNet  Google Scholar 

  24. Leizarowitz A, Mizel VJ (1989) One dimensional infinite horizon variational problems arising in continuum mechanics. Arch Ration Mech Anal 106:161–194

    Article  MATH  MathSciNet  Google Scholar 

  25. Lykina V, Pickenhain S, Wagner M (2008) Different interpretations of the improper integral objective in an infinite horizon control problem. J Math Anal Appl 340: 498–510

    Article  MATH  MathSciNet  Google Scholar 

  26. Makarov VL, Rubinov AM (1977) Mathematical theory of economic dynamics and equilibria. Springer, New York

    Book  MATH  Google Scholar 

  27. Malinowska AB, Martins N, Torres DFM (2011) Transversality conditions for infinite horizon variational problems on time scales. Optim Lett 5:41–53

    Article  MATH  MathSciNet  Google Scholar 

  28. Marcus M, Zaslavski AJ (1999) On a class of second order variational problems with constraints. Israel J Math 111:1–28

    Article  MATH  MathSciNet  Google Scholar 

  29. Marcus M, Zaslavski AJ (1999) The structure of extremals of a class of second order variational problems. Ann Inst H Poincaré Anal Non linéaire 16:593–629

    Article  MATH  MathSciNet  Google Scholar 

  30. Marcus M, Zaslavski AJ (2002) The structure and limiting behavior of locally optimal minimizers. Ann Inst H Poincaré, Anal Non linéaire 19:343–370

    Article  MATH  MathSciNet  Google Scholar 

  31. McKenzie LW (1976) Turnpike theory. Econometrica 44:841–866

    Article  MATH  MathSciNet  Google Scholar 

  32. Mordukhovich BS (1990) Minimax design for a class of distributed parameter systems. Autom Remote Control 50:1333–1340

    MathSciNet  Google Scholar 

  33. Mordukhovich BS (2011) Optimal control and feedback design of state-constrained parabolic systems in uncertainly conditions. Appl Anal 90:1075–1109

    Article  MATH  MathSciNet  Google Scholar 

  34. Mordukhovich BS, Shvartsman I (2004) Optimization and feedback control of constrained parabolic systems under uncertain perturbations. In: Optimal control, stabilization and nonsmooth analysis. Lecture notes in control and information science. Springer, Berlin, pp 121–132

    Google Scholar 

  35. Ocana Anaya E, Cartigny P, Loisel P (2009) Singular infinite horizon calculus of variations. Applications to fisheries management. J Nonlinear Convex Anal 10:157–176

    MATH  MathSciNet  Google Scholar 

  36. Pickenhain S, Lykina V, Wagner M (2008) On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems. Control Cybern 37:451–468

    MATH  MathSciNet  Google Scholar 

  37. Porretta A, Zuazua E (2013) Long time versus steady state optimal control. SIAM J Control Optim 51:4242–4273

    Article  MATH  MathSciNet  Google Scholar 

  38. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  39. Rubinov AM (1984) Economic dynamics. J Sov Math 26:1975–2012

    Article  MATH  Google Scholar 

  40. Samuelson PA (1965) A catenary turnpike theorem involving consumption and the golden rule. Am Econ Rev 55:486–496

    Google Scholar 

  41. von Weizsacker CC (1965) Existence of optimal programs of accumulation for an infinite horizon. Rev Econ Stud 32:85–104

    Article  Google Scholar 

  42. Zaslavski AJ (1987) Ground states in Frenkel-Kontorova model. Math USSR Izvestiya 29:323–354

    Article  Google Scholar 

  43. Zaslavski AJ (1999) Turnpike property for dynamic discrete time zero-sum games. Abstr Appl Anal 4:21–48

    Article  MATH  MathSciNet  Google Scholar 

  44. Zaslavski AJ (2006) Turnpike properties in the calculus of variations and optimal control. Springer, New York

    MATH  Google Scholar 

  45. Zaslavski AJ (2007) Turnpike results for a discrete-time optimal control systems arising in economic dynamics. Nonlinear Anal 67:2024–2049

    Article  MATH  MathSciNet  Google Scholar 

  46. Zaslavski AJ (2008) A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J Convex Anal 15:869–890

    MATH  MathSciNet  Google Scholar 

  47. Zaslavski AJ (2009) Structure of approximate solutions of variational problems with extended-valued convex integrands. ESAIM Control Optim Calc Var 15:872–894

    Article  MATH  MathSciNet  Google Scholar 

  48. Zaslavski AJ (2010) Optimal solutions for a class of infinite horizon variational problems with extended-valued integrands. Optimization 59:181–197

    Article  MATH  MathSciNet  Google Scholar 

  49. Zaslavski AJ (2011) Two turnpike results for a continuous-time optimal control systems. In: Proceedings of an international conference, complex analysis and dynamical systems IV: function theory and optimization, vol 553, pp 305–317

    MathSciNet  Google Scholar 

  50. Zaslavski AJ (2011) The existence and structure of approximate solutions of dynamic discrete time zero-sum games. J Nonlinear Convex Anal 12:49–68

    MATH  MathSciNet  Google Scholar 

  51. Zaslavski AJ (2013) Structure of solutions of variational problems. SpringerBriefs in optimization. Springer, New York

    Book  MATH  Google Scholar 

  52. Zaslavski AJ (2013) Structure of approximate solutions of optimal control problems. SpringerBriefs in optimization. Springer, New York

    Book  MATH  Google Scholar 

  53. Zaslavski AJ (2014) Turnpike phenomenon and infinite horizon optimal control. Springer optimization and its applications. Springer, New York

    Google Scholar 

  54. Zaslavski AJ (2014) Structure of approximate solutions of dynamic continuous-time zero-sum games. J Dyn Games 1:153–179

    Article  MATH  MathSciNet  Google Scholar 

  55. Zaslavski AJ (2014) Structure of solutions of variational problems with extended-valued integrands in the regions close to the endpoints. Set-Valued Var Anal 22:809–842

    Article  MATH  MathSciNet  Google Scholar 

  56. Zaslavski AJ, Leizarowitz A (1997) Optimal solutions of linear control systems with nonperiodic integrands. Math Oper Res 22: 726–746

    Article  MATH  MathSciNet  Google Scholar 

  57. Zaslavski AJ, Leizarowitz A (1998) Optimal solutions of linear periodic control systems with convex integrands. Appl Math Optim 37:127–150

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaslavski, A.J. (2015). Linear Control Systems with Nonconvex Integrands. In: Turnpike Theory of Continuous-Time Linear Optimal Control Problems. Springer Optimization and Its Applications, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-19141-6_3

Download citation

Publish with us

Policies and ethics