Skip to main content

Natural Waxes as Oil Structurants

  • Chapter
  • First Online:
Alternative Routes to Oil Structuring

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD))

Abstract

Wax-based oleogels display very interesting and complex rheological behavior; the physical gels of liquid oils created using natural waxes can be assumed to have characteristics of both the flocculated suspensions and semi-dilute polymer solutions. In this chapter, a comparative evaluation of six different natural waxes (with differing melting ranges) is described mainly with respect to their network forming properties at their respective minimum gelling concentrations to give the readers a comprehensive understanding of wax-based oleogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blake A, Co E, Marangoni A (2014) Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J Am Oil Chem Soc 91(6):885–903

    Article  CAS  Google Scholar 

  2. Hwang H-S, Kim S, Singh M, Winkler-Moser J, Liu S (2012) Organogel formation of soybean oil with waxes. J Am Oil Chem Soc 89(4):639–647

    Article  CAS  Google Scholar 

  3. Dassanayake LSK, Kodali DR, Ueno S (2011) Formation of oleogels based on edible lipid materials. Curr Opin Colloid Interface Sci 16(5):432–439

    Article  CAS  Google Scholar 

  4. Cottom WP (2000) Waxes. In: Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York

    Google Scholar 

  5. Patel AR, Schatteman D, Vos WHD, Dewettinck K (2013) Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Advances 3(16):5324–5327

    Article  CAS  Google Scholar 

  6. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM (2007) Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J Am Oil Chem Soc 84(11):989–1000

    Article  CAS  Google Scholar 

  7. Patel AR, Rajarethinem PS, Gredowska A, Turhan O, Lesaffer A, De Vos WH, Van de Walle D, Dewettinck K (2014) Edible applications of shellac oleogels: spreads, chocolate paste and cakes. Food & Function 5(4):645–652

    Article  CAS  Google Scholar 

  8. Patel AR, Schatteman D, De Vos WH, Lesaffer A, Dewettinck K (2013) Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J Colloid Interface Sci 411:114–121

    Article  CAS  Google Scholar 

  9. Hwang H-S, Singh M, Bakota E, Winkler-Moser J, Kim S, Liu S (2013) Margarine from organogels of plant wax and soybean oil. J Am Oil Chem Soc 90(11):1705–1712

    Article  CAS  Google Scholar 

  10. Jana S, Martini S (2014) Effect of high-Intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils. J Agric Food Chem 62(41):10192–10202

    Article  CAS  Google Scholar 

  11. Dassanayake LSK, Kodali DR, Ueno S, Sato K (2012) Crystallization kinetics of organogels prepared by rice bran wax and vegetable oils. J Oleo Sci 61(1):1–9

    Article  Google Scholar 

  12. Alvarez-Mitre FM, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Toro-Vazquez JF (2012) Shearing as a variable to engineer the rheology of candelilla wax organogels. Food Res Int 49(1):580–587

    Article  CAS  Google Scholar 

  13. Alvarez-Mitre FM, Toro-Vázquez JF, Moscosa-Santillán M (2013) Shear rate and cooling modeling for the study of candelilla wax organogels’ rheological properties. J Food Eng 119(3):611–618

    Article  Google Scholar 

  14. Morales-Rueda J, Dibildox-Alvarado E, Charó-Alonso M, Toro-Vazquez J (2009) Rheological properties of candelilla wax and dotriacontane organogels measured with a true-gap system. J Am Oil Chem Soc 86(8):765–772

    Article  CAS  Google Scholar 

  15. Toro-Vazquez J, Morales-Rueda J, Mallia VA, Weiss R (2010) Relationship between molecular structure and thermo-mechanical properties of candelilla wax and amides derived from (R)-12-hydroxystearic acid as gelators of safflower Oil. Food Biophys 5(3):193–202

    Article  Google Scholar 

  16. Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A, Charó-Alonso MA, Mallia VA, Weiss RG (2013) Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir 29(25):7642–7654

    Article  CAS  Google Scholar 

  17. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3160

    Article  CAS  Google Scholar 

  18. Heijna MCR, Theelen MJ, van Enckevort WJP, Vlieg E (2007) Spherulitic growth of hen egg-white lysozyme crystals. J Phys Chem B 111(7):1567–1573

    Article  CAS  Google Scholar 

  19. Malkin AI, Malkin AY, Isayev AI (2006) Rheology: concepts, methods and applications. Chemtech Publishing, Toronto

    Google Scholar 

  20. Menard KP (2008) Rheology basic. In: Dynamic mechanical analysis, pp 37–56. CRC Press, Boca Raton

    Google Scholar 

  21. Mewis J, Wagner N (2012) Colloidal suspension rheology. Cambridge University Press, Cambridge

    Google Scholar 

  22. Mezger TG (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Network GmbH & Co. KG, Hannover

    Google Scholar 

  23. Cheng DCH (1986) Yield stress: a time-dependent property and how to measure it. Rheol Acta 25(5):542–554

    Article  CAS  Google Scholar 

  24. Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2(4):274–283

    Article  CAS  Google Scholar 

  25. Galindo-Rosales FJ, Rubio-Hernandez FJ (2010) Static and dynamic yield stresses of Aerosil® 200 suspensions in polypropylene glycol. Appl Rheol 20:22787

    Google Scholar 

  26. Galindo-Rosales FJ, Rubio-Hernández FJ, Velázquez-Navarro JF, Gómez-Merino AI (2007) Structural level of silica-fumed aqueous suspensions. J Am Ceram Soc 90(5):1641–1643

    Article  CAS  Google Scholar 

  27. Emanuele V, Roberto P, Ruben FGV, Romano L, Paolo DA, Thomas PL (2005) Wax crystallization and aggregation in a model crude oil. J Phys Condens Matter 17(45):S3651

    Google Scholar 

  28. Weltmann RN (1943) Breakdown of thixotropic structure as function of time. J Appl Phys 14(7):343–350

    Article  CAS  Google Scholar 

  29. Coussot P, Nguyen QD, Huynh HT, Bonn D (2002) Viscosity bifurcation in thixotropic, yielding fluids. J Rheol (1978-present) 46(3):573–589

    Google Scholar 

  30. Patel AR, Schatteman D, Lesaffer A, Dewettinck K (2013) A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Adv 3(45):22900–22903

    Article  CAS  Google Scholar 

  31. Uhlherr PHT, Guo J, Tiu C, Zhang XM, Zhou JZQ, Fang TN (2005) The shear-induced solid–liquid transition in yield stress materials with chemically different structures. J Nonnewton Fluid Mech 125(2–3):101–119

    Article  CAS  Google Scholar 

  32. Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K (2015) Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. J Agric Food Chem. doi:10.1021/acs.jafc.5b01548

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok R. Patel .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Patel, A.R. (2015). Natural Waxes as Oil Structurants. In: Alternative Routes to Oil Structuring. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-19138-6_2

Download citation

Publish with us

Policies and ethics