Skip to main content

Photocatalytic Degradation of Divalent Metals under Sunlight Irradiation Using Nanoparticle TiO2 Modified Concrete Materials (Recycled Glass Cullet)

  • Chapter

Abstract

Tackling water shortage issues with the desalination of seawater and salty water is common in desert nations. Recently, new methodologies have been developed based on using nanotechnology for water desalination. Updating the field of water treatment by the photochemical technique has led to an important development in oxidative degradation processes applying titanium dioxide (TiO2) as a catalyst. Searching for low-cost technologies for materials science applications, glass waste was used as an adsorbent and a promoting catalyst for photocatalytic oxidation of pollutants under sunlight irradiation source. In this study the newly-explored nanocomposite TiO2 catalyst supported with recycled glass cullet, derived from crushed waste beverage bottles (as adsorbent), was used as a promising alternative catalyst material for the removal of Cd, Cu, Pb and Zn from water. The effects of various parameters (adsorbent and catalyst dose, solution pH, contact time and initial metal concentration) on metal-removal efficiency were investigated. The results revealed a higher removal percentage of metals using glass cullet/TiO2 (GB/TiO2) than GB as low-cost materials for water treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aroua MK, Leong SPP, Teo LY, Yin CY, Daud WMAW (2008) Real-time determination of kinetics of adsorption of lead (II) onto palm shell-based activated carbon using ion selective electrode. Bioresour Technol 99:5786–5792

    Article  CAS  Google Scholar 

  • Bouzid J, Elouear Z, Ksibi M, Feki A, Montiel A (2008) A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J Hazard Mater 152(2):838–845

    Article  CAS  Google Scholar 

  • Chaizasith S, Chaizasith P, Septhum C (2006) Removal of cadmium and nickel from aqueous solutions by adsorption onto treated fly ash from Thailand. J Sci Technol 11:13–19

    Google Scholar 

  • Chen J, Poon CS (2009) Photocatalytic activity of titanium dioxide modified concrete materials – influence of utilizing recycled glass cullets as aggregate. J Environ Manage 90:3436–3442

    Article  CAS  Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275

    Article  CAS  Google Scholar 

  • Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39(10):2167–2177

    Article  CAS  Google Scholar 

  • Fonseca MG, de Oliveira MM, Arakaki LNH (2006) Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral. J Hazard Mater B137:288–292

    Article  Google Scholar 

  • Harraz FA, Abdel-Salam OE, Mostafa AA, Mohamed RM, Hanafy M (2013) Rapid synthesis of titania–silica nanoparticles photocatalyst by a modified sol-gel method for cyanide degradation and heavy metals removal. J Alloys Compd 551:1–7

    Article  CAS  Google Scholar 

  • Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97(4):692–700

    Article  CAS  Google Scholar 

  • Hilmi A, Luong JHT, Nguyen AL (1999) Utilization of TiO2 deposited on glass plates for removal of metals from aqueous wastes. Chemosphere 38(4):865–874

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Holgado M, Cintas A, Ibisate M, Serna CJ, Lopez C, Meseguer F (2000) Three-dimensional arrays formed by monodisperse TiO2 coated on SiO2 spheres. J Colloid Interface Sci 229(1):6–11

    Article  CAS  Google Scholar 

  • Inagaki M, Hirose Y, Matsunaga T, Tsumura T (2003) Carbon coating of anatase-type TiO2 through their precipitation in PVA aqueous solution. Carbon 41:2619–2624

    Article  CAS  Google Scholar 

  • Janusz W, Matysek M (2006) Coadsorption of Cd (II) and oxalate ions at the TiO2 electrolyte solution interface. J Colloid Interface Sci 296:22–29

    Article  CAS  Google Scholar 

  • Kadirvelu K, Faur-Brasquet C, Le Cloirec P (2000) Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths. J Langmuir 16(22):8404–8409

    Article  CAS  Google Scholar 

  • Kim TK, Lee MN, Lee SH, Park YC, Jung CK (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:171–177

    Article  CAS  Google Scholar 

  • Liang MJ, Kong CH, Wang C (2003) Characterization and electrophoretic deposition of apatite on titanium substrate. J Mater Sci Mater Med 14:797–801

    Google Scholar 

  • Mahltig B, Gutmann ED, Meyer C, Solvo D (2011) Thermal preparation of nanocrystalline anatase containing TiO2 and TiO2/SiO2 coating agents for application of photocatalytic treatments. Mater Chem Phys 127(1-2):285–291

    Article  CAS  Google Scholar 

  • Ming H, Shujuan Z, Pan B, Zhang W, Lu L, Zhang Q (2012) A review – heavy metal removal from water/wastewater by nanosized metal oxides. J Hazard Mater 211/212:317–331

    Article  Google Scholar 

  • Mishra SP, Singh VK, Tiwari D (1996) Radiotracer technique in adsorption study. Efficient removal of mercury from aqueous solutions by hydrous zirconium oxide. Appl Radiat Isot 47:15–21

    Article  CAS  Google Scholar 

  • Mona BM (2010) Low cost nanomaterials for water desalination and purification desalination. Final UNESCO Report, Contract No. 4500103693, Nano Tech 28 pp

    Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  Google Scholar 

  • Ozmen M, Keziban C, Ilker A, Arslan G, Cengeloglu Y, Ersoz M, Ali T (2009) Surface modification of glass beads with glutaraldehyde: characterization and their adsorption property for metal ions. J Hazard Mater 171:594–600

    Article  CAS  Google Scholar 

  • Parida K, Mishra KG, Dash SK (2012) Adsorption of toxic metal ion Cr (VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies. J Hazard Mater 241–242:395–403

    Article  Google Scholar 

  • Petrella A, Petruzzelli V, Basile T, Petrella M, Boghetich G, Petruzzelli DA (2010) Recycled porous glass from municipal/industrial solid wastes sorting operations as a lead ion sorbent from wastewaters. React Funct Polym 70:203–209

    Article  CAS  Google Scholar 

  • Rashidi F, Sarabi RS, Ghasemi Z, Seif A (2010) Kinetic, equilibrium and thermodynamic studies for the removal of lead (II) and copper (II) ions from aqueous solutions by nanocrystalline TiO2. Superlattice Microstruct 48:577–591

    Article  CAS  Google Scholar 

  • Strauss M, Maroneze CM, Souza D, Silva JM, Sigoli FA, Gushikem Y, Mazali MIO (2011) Annealing temperature effects on sol–gel nanostructured mesoporous TiO2/SiO2 and its photocatalytic activity. Mater Chem Phys 126(1-2):188–194

    Article  CAS  Google Scholar 

  • Tsumura T, Kojitani N, Umemura H, Toyoda M, Inagaki M (2002) Composites between photoactive anatase-type TiO2 and adsorptive carbon. Appl Surf Sci 196:429–436

    Article  CAS  Google Scholar 

  • Visa M, Anca D (2013) TiO2/fly ash novel substrate for simultaneous removal of heavy metals and surfactants. Chem Eng J 223:860–868

    Article  CAS  Google Scholar 

  • Visa M, Carcel RA, Andronic L, Duta A (2009) Advanced treatment of wastewater with methyl orange and heavy metals on TiO2, fly ash and their mixtures. Catal Today 144:137–142

    Article  CAS  Google Scholar 

  • Wang YH, Lin SH, Juang RS (2003) Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J Hazard Mater 102:291–302

    Article  CAS  Google Scholar 

  • Wang T, Liu W, Xu N, Ni J (2013) Adsorption and desorption of Cd(II) onto titanate nanotubes efficient regeneration of tubular structures. J Hazard Mater 250–251:379–386

    Article  Google Scholar 

  • Wu Yun, Shuzhen Zhang, Xueyan Guo, Honglin Huang (2008) Adsorption of chromium(III) on lignin. Bioresour Technol 99(16):7709–7715

    Article  CAS  Google Scholar 

  • Zainal Z, Hui LK, Hussein MZ, Abdullah AH, Khair IM, Hamadneh R (2009) Characterization of TiO2–Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation–adsorption process. J Hazard Mater 14:138–145

    Article  Google Scholar 

  • Zhai YB, Wei XX, Zheng GM, Zhang DJ, Cfu KF (2004) Study of adsorbent derived from sewage sludge for the removal of Cd2+, Ni2+ in aqueous solutions. Sep Purif Technol 38:191–196

    Article  CAS  Google Scholar 

  • Zhang FS, Itoh H (2003) Adsorbents made from waste ashes and post-consumer PET and their potential utilization in wastewater treatment. J Hazard Mater B101:323–337

    Article  Google Scholar 

  • Zhang Z, Wang C, Zakaria R, Ying J (1998) Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B102(52):10871–10878

    Article  Google Scholar 

  • Zhang K, Cheung WH, Valix M (2005) Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. Chemosphere 60:1129–1140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rashed .

Editor information

Editors and Affiliations

Additional information

List of Figures

Fig. 7.1 Effect of GB/TiO2 dosage on the removal of Cd, Pb, Cu, and Zn

Fig. 7.2 Effect of initial metal concentration on the removal of Cd, Pb, Cu and Zn

Fig. 7.3 Effect of pH on removal efficiencies of metals

Fig. 7.4 Effect of contact time on the removal of Cd, Pb, Cu and Zn

Fig. 7.5 SEM Micrographs of GB and GB/TiO2 samples

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rashed, M.N. (2015). Photocatalytic Degradation of Divalent Metals under Sunlight Irradiation Using Nanoparticle TiO2 Modified Concrete Materials (Recycled Glass Cullet). In: Baawain, M., Choudri, B., Ahmed, M., Purnama, A. (eds) Recent Progress in Desalination, Environmental and Marine Outfall Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-19123-2_7

Download citation

Publish with us

Policies and ethics