Skip to main content

Abstract

Oxidation of the antioxidant glutathione (GSH) to a disulfide (GSSG) has long been an indicator of oxidative stress. GSH is also critical in the detoxification of xenobiotics (drugs, pollutants, carcinogens) through a broad range of reactions with GSH- dependent enzymes containing a redox sensitive cysteine (Cys) residue that undergoes reversible oxidation and reduction at the active site: GSH reductase (GR), glutaredoxin (Grx), and the families of GSH peroxidases (Gpxs) and GSH-S-transferases (GSTs). GSH and GSSG are also involved in many cellular processes termed S-glutathionylation where disulfide bonds are formed with protein Cys residues that subsequently alter enzymatic activity or protein function. The equipoise of GSH/GSSG is pivotal in signal transduction pathways mediated by reaction of reactive oxygen species (ROS) with crucial protein Cys residues. ROS-dependent signaling also involves reduced/oxidized thiol pairs including thioredoxin (Trx-SH/Trx-SS) and Cys with its oxidized form cystine (CySS). Although not in equilibrium, these thiol/disulfide couples are organized into redox circuits with cross-talk. When these redox circuits are disrupted, critical redox active Cys sites become oxidized and protein functions are perturbed. Understanding the roles of redox signaling and redox homeostasis for GSH and other thiol pairs in the responses of the organelle or cell to redox-active chemicals is central to determining the effects of such chemicals on macromolecular structure, regulation, and signaling during the life cycle. Through a better mechanistic understanding, the roles for redox homeostasis of thiol pairs like GSH in the resilience and adaptability to diet and environmental exposures are likely to emerge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Cys:

Cysteine

CySS:

Cystine

GCL:

γ-Glutamylcysteine Ligase

GGT:

γ-Glutamyl transferase

GSH:

Glutathione (reduced)

GSSG:

Glutathione (oxidized)

Gpx:

Glutathione Peroxidase

GR:

Glutathione Reductase

GS:

Glutathione Synthase

Grx:

Glutaredoxin

GST:

Glutathione S-transferase

H2O2 :

Hydrogen Peroxide

Prdx:

Peroxiredoxin

ROS:

Reactive oxygen species

Trx:

Thioredoxin

TrxR:

Thioredoxin Reductase

VOC:

Volatile Organic Compounds

References

  1. Coppo L, Ghezzi P (2011) Thiol regulation of pro-inflammatory cytokines and innate immunity: protein S-thiolation as a novel molecular mechanism. Biochem Soc Trans 39(5):1268–1272. doi:10.1042/BST0391268

    Article  CAS  PubMed  Google Scholar 

  2. Moosmann B (2011) Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging. Exp Gerontol 46(2–3):164–169. doi:10.1016/j.exger.2010.08.034

    Article  CAS  PubMed  Google Scholar 

  3. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE (2013) Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 112(2):382–392. doi:10.1161/CIRCRESAHA.112.268680

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Matteucci E, Giampietro O (2010) Thiol signalling network with an eye to diabetes. Molecules 15(12):8890–8903. doi:10.3390/molecules15128890

    Article  CAS  PubMed  Google Scholar 

  5. Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12(12):931–947. doi:10.1038/nrd4002

    Article  CAS  PubMed  Google Scholar 

  6. Kancheva VD, Kasaikina OT (2013) Bio-antioxidants – a chemical base of their antioxidant activity and beneficial effect on human health. Curr Med Chem 20(37):4784–4805

    Article  CAS  PubMed  Google Scholar 

  7. Go YM, Jones DP (2013) Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 48(2):173–181. doi:10.3109/10409238.2013.764840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal. doi:10.1089/ars.2014.5837

    PubMed Central  PubMed  Google Scholar 

  9. Woolley JF, Stanicka J, Cotter TG (2013) Recent advances in reactive oxygen species measurement in biological systems. Trends Biochem Sci 38(11):556–565. doi:10.1016/j.tibs.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  10. Bonini MG, Consolaro ME, Hart PC, Mao M, de Abreu AL, Master AM (2014) Redox control of enzymatic functions: the electronics of life’s circuitry. IUBMB Life. doi:10.1002/iub.1258

    PubMed  Google Scholar 

  11. Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27(3–4):322–328

    Article  CAS  PubMed  Google Scholar 

  12. Lo Conte M, Carroll KS (2013) The redox biochemistry of protein sulfenylation and sulfinylation. J Biol Chem 288(37):26480–26488. doi:10.1074/jbc.R113.467738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Paulsen CE, Carroll KS (2013) Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113(7):4633–4679. doi:10.1021/cr300163e

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Truong TH, Carroll KS (2013) Redox regulation of protein kinases. Crit Rev Biochem Mol Biol 48(4):332–356. doi:10.3109/10409238.2013.790873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Garcia-Santamarina S, Boronat S, Hidalgo E (2014) Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction. Biochemistry 53(16):2560–2580. doi:10.1021/bi401700f

    Article  CAS  PubMed  Google Scholar 

  16. Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212

    Article  CAS  PubMed  Google Scholar 

  17. Olsen LF, Issinger OG, Guerra B (2013) The Yin and Yang of redox regulation. Redox Rep 18:245–252. doi:10.1179/1351000213Y.0000000059

    Article  CAS  PubMed  Google Scholar 

  18. Banerjee R (2012) Redox outside the box: linking extracellular redox remodeling with intracellular redox metabolism. J Biol Chem 287(7):4397–4402. doi:10.1074/jbc.R111.287995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Banerjee R, Smith W (2012) Thematic minireview series on redox sensing and regulation. J Biol Chem 287(7):4395–4396. doi:10.1074/jbc.R111.330761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(Suppl 2):116–125. doi:10.1111/j.1463-1326.2010.01266.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Krzywanski DM, Dickinson DA, Iles KE, Wigley AF, Franklin CC, Liu RM, Kavanagh TJ, Forman HJ (2004) Variable regulation of glutamate cysteine ligase subunit proteins affects glutathione biosynthesis in response to oxidative stress. Arch Biochem Biophys 423(1):116–125. doi:10.1016/j.abb.2003.11.004

    Article  CAS  PubMed  Google Scholar 

  22. Limon-Pacheco JH, Gonsebatt ME (2010) The glutathione system and its regulation by neurohormone melatonin in the central nervous system. Cent Nerv Syst Agents Med Chem 10(4):287–297

    Article  CAS  PubMed  Google Scholar 

  23. van ’t Erve TJ, Wagner BA, Ryckman KK, Raife TJ, Buettner GR (2013) The concentration of glutathione in human erythrocytes is a heritable trait. Free Radic Biol Med 65:742–749. doi:10.1016/j.freeradbiomed.2013.08.002

    Article  PubMed  CAS  Google Scholar 

  24. Di Simplicio P, Frosali S, Priora R, Summa D, Cherubini Di Simplicio F, Di Giuseppe D, Di Stefano A (2005) Biochemical and biological aspects of protein thiolation in cells and plasma. Antioxid Redox Signal 7(7–8):951–963. doi:10.1089/ars.2005.7.951

    Article  PubMed  Google Scholar 

  25. Borisenko GG, Martin I, Zhao Q, Amoscato AA, Tyurina YY, Kagan VE (2004) Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells. Evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity. J Biol Chem 279(22):23453–23462. doi:10.1074/jbc.M400119200

    Article  CAS  PubMed  Google Scholar 

  26. Mozziconacci O, Williams TD, Schoneich C (2012) Intramolecular hydrogen transfer reactions of thiyl radicals from glutathione: formation of carbon-centered radical at Glu, Cys, and Gly. Chem Res Toxicol 25(9):1842–1861. doi:10.1021/tx3000494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Cuddihy SL, Parker A, Harwood DT, Vissers MC, Winterbourn CC (2008) Ascorbate interacts with reduced glutathione to scavenge phenoxyl radicals in HL60 cells. Free Radic Biol Med 44(8):1637–1644. doi:10.1016/j.freeradbiomed.2008.01.021

    Article  CAS  PubMed  Google Scholar 

  28. Dalle-Donne I, Milzani A, Gagliano N, Colombo R, Giustarini D, Rossi R (2008) Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal 10(3):445–473. doi:10.1089/ars.2007.1716

    Article  CAS  PubMed  Google Scholar 

  29. Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391. doi:10.1016/j.coph.2007.06.003

    Article  CAS  PubMed  Google Scholar 

  30. Go YM, Ziegler TR, Johnson JM, Gu L, Hansen JM, Jones DP (2007) Selective protection of nuclear thioredoxin-1 and glutathione redox systems against oxidation during glucose and glutamine deficiency in human colonic epithelial cells. Free Rad Biol Med 42:363–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Demasi M, Netto LE, Silva GM, Hand A, de Oliveira CL, Bicev RN, Gozzo F, Barros MH, Leme JM, Ohara E (2013) Redox regulation of the proteasome -glutathionylation. Redox Biol 2:44–51. doi:10.1016/j.redox.2013.12.003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Kim HS, Ullevig SL, Zamora D, Lee CF, Asmis R (2012) Redox regulation of MAPK phosphatase 1 controls monocyte migration and macrophage recruitment. Proc Natl Acad Sci U S A 109(41):E2803–E2812. doi:10.1073/pnas.1212596109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Olschewski A, Weir EK (2014) Redox regulation of ion channels in the pulmonary circulation. Antioxid Redox Signal. doi:10.1089/ars.2014.5899

    PubMed  Google Scholar 

  34. Jerng HH, Pfaffinger PJ (2014) S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation. PLoS One 9(3), e93315. doi:10.1371/journal.pone.0093315

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Yang Y, Jin X, Jiang C (2014) S-glutathionylation of ion channels: insights into the regulation of channel functions, thiol modification crosstalk, and mechanosensing. Antioxid Redox Signal 20(6):937–951. doi:10.1089/ars.2013.5483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Alegre-Cebollada J, Kosuri P, Giganti D, Eckels E, Rivas-Pardo JA, Hamdani N, Warren CM, Solaro RJ, Linke WA, Fernandez JM (2014) S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 156(6):1235–1246. doi:10.1016/j.cell.2014.01.056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Uys JD, Xiong Y, Townsend DM (2011) Nitrosative stress-induced S-glutathionylation of protein disulfide isomerase. Methods Enzymol 490:321–332. doi:10.1016/B978-0-12-385114-7.00018-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Butturini E, Carcereri de Prati A, Chiavegato G, Rigo A, Cavalieri E, Darra E, Mariotto S (2013) Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic Biol Med 65:1322–1330. doi:10.1016/j.freeradbiomed.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  39. Mailloux RJ, McBride SL, Harper ME (2013) Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38(12):592–602. doi:10.1016/j.tibs.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  40. Yin F, Sancheti H, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17(12):1714–1727. doi:10.1089/ars.2012.4639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16(6):471–475. doi:10.1089/ars.2011.4454

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33(9):1290–1300

    Article  CAS  PubMed  Google Scholar 

  43. Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780(11):1273–1290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44(6):921–937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Go YM, Jones DP (2010) Redox control systems in the nucleus: mechanisms and functions. Antioxid Redox Signal 13(4):489–509. doi:10.1089/ars.2009.3021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Garcia-Gimenez JL, Markovic J, Dasi F, Queval G, Schnaubelt D, Foyer CH, Pallardo FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830(5):3304–3316. doi:10.1016/j.bbagen.2012.10.005

    Article  CAS  PubMed  Google Scholar 

  47. Diaz Vivancos P, Wolff T, Markovic J, Pallardo FV, Foyer CH (2010) A nuclear glutathione cycle within the cell cycle. Biochem J 431(2):169–178. doi:10.1042/BJ20100409

    Article  CAS  PubMed  Google Scholar 

  48. Jahoor F (2012) Effects of decreased availability of sulfur amino acids in severe childhood undernutrition. Nutr Rev 70(3):176–187. doi:10.1111/j.1753-4887.2011.00462.x

    Article  PubMed Central  PubMed  Google Scholar 

  49. Bounous G, Molson JH (2003) The antioxidant system. Anticancer Res 23(2B):1411–1415

    CAS  PubMed  Google Scholar 

  50. Blanco RA, Ziegler TR, Carlson BA, Cheng PY, Park Y, Cotsonis GA, Accardi CJ, Jones DP (2007) Diurnal variation in glutathione and cysteine redox states in human plasma. Am J Clin Nutr 86(4):1016–1023

    CAS  PubMed  Google Scholar 

  51. Rebrin I, Sohal RS (2008) Pro-oxidant shift in glutathione redox state during aging. Adv Drug Deliv Rev 60(13–14):1545–1552. doi:10.1016/j.addr.2008.06.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Roede JR, Uppal K, Liang Y, Promislow DE, Wachtman LM, Jones DP (2013) Characterization of plasma thiol redox potential in a common marmoset model of aging. Redox Biol 1(1):387–393. doi:10.1016/j.redox.2013.06.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Paredes J, Jones DP, Wilson ME, Herndon JG (2014) Age-related alterations of plasma glutathione and oxidation of redox potentials in chimpanzee (Pan troglodytes) and rhesus monkey (Macaca mulatta). Age 36(2):719–732. doi:10.1007/s11357-014-9615-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sekhar RV, Patel SG, Guthikonda AP, Reid M, Balasubramanyam A, Taffet GE, Jahoor F (2011) Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr 94(3):847–853. doi:10.3945/ajcn.110.003483

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Jiang P, Sheng Y, Ji L (2013) The age-related change of glutathione antioxidant system in mice liver. Toxicol Mech Methods 23(6):396–401. doi:10.3109/15376516.2013.769655

    Article  CAS  PubMed  Google Scholar 

  56. Chen CN, Brown-Borg HM, Rakoczy SG, Ferrington DA, Thompson LV (2010) Aging impairs the expression of the catalytic subunit of glutamate cysteine ligase in soleus muscle under stress. J Gerontol A Biol Sci Med Sci 65(2):129–137. doi:10.1093/gerona/glp194

    Article  PubMed  CAS  Google Scholar 

  57. Luo M, Fernandez-Estivariz C, Jones DP, Accardi CR, Alteheld B, Bazargan N, Hao L, Griffith DP, Blumberg JB, Galloway JR, Ziegler TR (2008) Depletion of plasma antioxidants in surgical intensive care unit patients requiring parenteral feeding: effects of parenteral nutrition with or without alanyl-glutamine dipeptide supplementation. Nutrition 24(1):37–44. doi:10.1016/j.nut.2007.10.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):3143–3153. doi:10.1016/j.bbagen.2012.09.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Mannery YO, Ziegler TR, Park Y, Jones DP (2010) Acetaminophen elimination half-life in humans is unaffected by short-term consumption of sulfur amino acid-free diet. J Pharmacol Exp Ther 333(3):948–953. doi:10.1124/jpet.110.166439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Mannery YO, Ziegler TR, Park Y, Jones DP (2010) Oxidation of plasma cysteine/cystine and GSH/GSSG redox potentials by acetaminophen and sulfur amino acid insufficiency in humans. J Pharmacol Exp Ther 333(3):939–947. doi:10.1124/jpet.110.166421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Jones DP, Brown LA, Sternberg P (1995) Variability in glutathione-dependent detoxication in vivo and its relevance to detoxication of chemical mixtures. Toxicology 105(2–3):267–274

    Article  CAS  PubMed  Google Scholar 

  62. Jones DP, Carlson JL, Mody VC, Cai J, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28(4):625–635

    Article  CAS  PubMed  Google Scholar 

  63. Cantin AM, Hubbard RC, Crystal RG (1989) Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 139:370–372

    Article  CAS  PubMed  Google Scholar 

  64. Moss M, Guidot DM, Wong-Lambertina M, Ten Hoor T, Perez RL, Brown LA (2000) The effects of chronic alcohol abuse on pulmonary glutathione homeostasis. Am J Respir Crit Care Med 161(2 Pt 1):414–419

    Article  CAS  PubMed  Google Scholar 

  65. Yeh MY, Burnham EL, Moss M, Brown LA (2007) Chronic alcoholism alters systemic and pulmonary glutathione redox status. Am J Respir Crit Care Med 176(3):270–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Fitzpatrick AM, Teague WG, Burwell L, Brown MS, Brown LA (2011) Glutathione oxidation is associated with airway macrophage functional impairment in children with severe asthma. Pediatr Res 69(2):154–159. doi:10.1203/PDR.0b013e3182026370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Montaldo C, Cannas E, Ledda M, Rosetti L, Congiu L, Atzori I (2002) Bronchoalveolar glutathione and nitrite/nitrate in idiopathic pulmonary fibrosis and sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 19:54–58

    CAS  PubMed  Google Scholar 

  68. Behr J, Konrad M, Braun B, Schwaiblmair M, Vogelmeier C, Group MLT (2000) Evidence for oxidative stress in bronchiolitis obliterans syndrome after lung and heart-lung transplantation. Transplantation 69:1856–1860

    Article  CAS  PubMed  Google Scholar 

  69. Pacht ER, Diaz P, Clanton T, Hart J, Gadek JE (1997) Alveolar fluid glutathione decreases in asymptomatic HIV-seropositive subjects over time. Chest 112(3):785–788

    Article  CAS  PubMed  Google Scholar 

  70. Sehlstedt M, Dove R, Boman C, Pagels J, Swietlicki E, Londahl J, Westerholm R, Bosson J, Barath S, Behndig AF, Pourazar J, Sandstrom T, Mudway IS, Blomberg A (2010) Antioxidant airway responses following experimental exposure to wood smoke in man. Part Fibre Toxicol 7:21. doi:10.1186/1743-8977-7-21

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Hodge S, Matthews G, Mukaro V, Ahern J, Shivam A, Hodge G, Holmes M, Jersmann H, Reynolds PN (2011) Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol 44(5):673–681. doi:10.1165/rcmb.2009-0459OC, 2009-0459OC [pii]

    Article  CAS  PubMed  Google Scholar 

  72. Behr J, Degenkolb B, Beinert T, Krombach F, Vogelmeier C (2000) Pulmonary glutathione levels in acute episodes of Farmer’s lung. Am J Respir Crit Care Med 161(6):1968–1971. doi:10.1164/ajrccm.161.6.9907112

    Article  CAS  PubMed  Google Scholar 

  73. Wang F, Li C, Liu W, Jin Y (2014) Modulation of microRNA expression by volatile organic compounds in mouse lung. Environ Toxicol 29(6):679–689. doi:10.1002/tox.21795

    Article  CAS  PubMed  Google Scholar 

  74. Wang F, Li C, Liu W, Jin Y (2013) Oxidative damage and genotoxic effect in mice caused by sub-chronic exposure to low-dose volatile organic compounds. Inhal Toxicol 25(5):235–242. doi:10.3109/08958378.2013.779767

    Article  CAS  PubMed  Google Scholar 

  75. Gould NS, Min E, Gauthier S, Chu HW, Martin R, Day BJ (2010) Aging adversely affects the cigarette smoke-induced glutathione adaptive response in the lung. Am J Respir Crit Care Med 182(9):1114–1122. doi:10.1164/rccm.201003-0442OC

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Santus P, Corsico A, Solidoro P, Braido F, Di Marco F, Scichilone N (2014) Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-Acetylcysteine. COPD. doi:10.3109/15412555.2014.898040

    PubMed Central  PubMed  Google Scholar 

  77. Mehta AJ, Guidot DM (2012) Alcohol abuse, the alveolar macrophage and pneumonia. Am J Med Sci 343(3):244–247. doi:10.1097/MAJ.0b013e31823ede77

    Article  PubMed Central  PubMed  Google Scholar 

  78. Burnham EL, Brown LA, Halls L, Moss M (2003) Effects of chronic alcohol abuse on alveolar epithelial barrier function and glutathione homeostasis. Alcohol Clin Exp Res 27(7):1167–1172

    Article  CAS  PubMed  Google Scholar 

  79. Brown LAS, Ping XD, Harris FL, Gauthier TW (2007) Glutathione availability modulates alveolar macrophage function in the chronic ethanol-fed rat. Am J Physiol Lung Cell Mol Physiol 292(2):L824–L832. doi:10.1152/ajplung.00346.2006

  80. Morris D, Khurasany M, Nguyen T, Kim J, Guilford F, Mehta R, Gray D, Saviola B, Venketaraman V (2013) Glutathione and infection. Biochim Biophys Acta 1830(5):3329–3349. doi:10.1016/j.bbagen.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  81. Cribbs SK, Guidot DM, Martin GS, Lennox J, Brown LA (2014) Anti-retroviral therapy is associated with decreased alveolar glutathione levels even in healthy HIV-infected individuals. PLoS One 9(2), e88630. doi:10.1371/journal.pone.0088630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Morris D, Guerra C, Khurasany M, Guilford F, Saviola B, Huang Y, Venketaraman V (2013) Glutathione supplementation improves macrophage functions in HIV. J Interf Cytokine Res 33(5):270–279. doi:10.1089/jir.2012.0103

    Article  CAS  Google Scholar 

  83. Yeligar SM, Harris FL, Hart CM, Brown LA (2014) Glutathione attenuates ethanol-induced alveolar macrophage oxidative stress and dysfunction by down-regulating NADPH oxidases. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00159.2013

    PubMed Central  PubMed  Google Scholar 

  84. Tang SM, Gabelaia L, Gauthier TW, Brown LA (2009) N-acetylcysteine improves group B streptococcus clearance in a rat model of chronic ethanol ingestion. Alcohol Clin Exp Res 33(7):1197–1201. doi:10.1111/j.1530-0277.2009.00943.x, ACER943 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Gauthier TW, Young PA, Gabelaia L, Tang SM, Ping XD, Harris FL, Brown LA (2009) In utero ethanol exposure impairs defenses against experimental group B streptococcus in the term Guinea pig lung. Alcohol Clin Exp Res 33(2):300–306. doi:10.1111/j.1530-0277.2008.00833.x, ACER833 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25. doi:10.1016/B978-0-12-405881-1.00001-X

    Article  CAS  PubMed  Google Scholar 

  87. Bosello-Travain V, Conrad M, Cozza G, Negro A, Quartesan S, Rossetto M, Roveri A, Toppo S, Ursini F, Zaccarin M, Maiorino M (2013) Protein disulfide isomerase and glutathione are alternative substrates in the one Cys catalytic cycle of glutathione peroxidase 7. Biochim Biophys Acta 1830(6):3846–3857. doi:10.1016/j.bbagen.2013.02.017

    Article  CAS  PubMed  Google Scholar 

  88. Flohe L, Toppo S, Cozza G, Ursini F (2011) A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 15(3):763–780. doi:10.1089/ars.2010.3397

    Article  CAS  PubMed  Google Scholar 

  89. Park J, Lee S, Lee S, Kang SW (2014) 2-Cys peroxiredoxins: emerging hubs determining redox dependency of mammalian signaling networks. Int J Cell Biol 2014:715867. doi:10.1155/2014/715867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562. doi:10.1016/j.redox.2014.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Martin RE, Cao Z, Bulleid NJ (2014) Regulating the level of intracellular hydrogen peroxide: the role of peroxiredoxin IV. Biochem Soc Trans 42(1):42–46. doi:10.1042/BST20130168

    Article  CAS  PubMed  Google Scholar 

  92. Ramming T, Appenzeller-Herzog C (2013) Destroy and exploit: catalyzed removal of hydroperoxides from the endoplasmic reticulum. Int J Cell Biol 2013:180906. doi:10.1155/2013/180906

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  93. Jeong W, Bae SH, Toledano MB, Rhee SG (2012) Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic Biol Med 53(3):447–456. doi:10.1016/j.freeradbiomed.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  94. Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE, Hampton MB, Winterbourn CC (2013) Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J Biol Chem 288(20):14170–14177. doi:10.1074/jbc.M113.460881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Liang Y, Harris FL, Jones DP, Brown LA (2013) Alcohol induces mitochondrial redox imbalance in alveolar macrophages. Free Radic Biol Med 65:1427–1434. doi:10.1016/j.freeradbiomed.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  96. Cox AG, Pearson AG, Pullar JM, Jonsson TJ, Lowther WT, Winterbourn CC, Hampton MB (2009) Mitochondrial peroxiredoxin 3 is more resilient to hyperoxidation than cytoplasmic peroxiredoxins. Biochem J 421(1):51–58. doi:10.1042/BJ20090242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Cox AG, Peskin AV, Paton LN, Winterbourn CC, Hampton MB (2009) Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48(27):6495–6501. doi:10.1021/bi900558g

    Article  CAS  PubMed  Google Scholar 

  98. Wall SB, Smith MR, Ricart K, Zhou F, Vayalil PK, Oh JY, Landar A (2014) Detection of electrophile-sensitive proteins. Biochim Biophys Acta 1840(2):913–922. doi:10.1016/j.bbagen.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  99. Dixon DP, Steel PG, Edwards R (2011) Roles for glutathione transferases in antioxidant recycling. Plant Signal Behav 6(8):1223–1227. doi:10.4161/psb.6.8.16253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Dourado DF, Fernandes PA, Mannervik B, Ramos MJ (2010) Glutathione transferase A1-1: catalytic importance of arginine 15. J Phys Chem B 114(4):1690–1697. doi:10.1021/jp908251z

    Article  CAS  PubMed  Google Scholar 

  101. Ginsberg G, Smolenski S, Hattis D, Guyton KZ, Johns DO, Sonawane B (2009) Genetic Polymorphism in Glutathione Transferases (GST): population distribution of GSTM1, T1, and P1 conjugating activity. J Toxicol Environ Health B Crit Rev 12(5–6):389–439. doi:10.1080/10937400903158375

    Article  CAS  PubMed  Google Scholar 

  102. Rodrigues EG, Smith K, Maule AL, Sjodin A, Li Z, Romanoff L, Kelsey K, Proctor S, McClean MD (2014) Urinary Polycyclic Aromatic Hydrocarbon (OH-PAH) Metabolite concentrations and the effect of GST polymorphisms among US air force personnel exposed to jet fuel. J Occup Environ Med 56(5):465–471. doi:10.1097/JOM.0000000000000142

    Article  CAS  PubMed  Google Scholar 

  103. Tang ZH, Zhang C, Cheng P, Sun HM, Jin Y, Chen YJ, Huang F (2014) Glutathione-S-Transferase Polymorphisms (GSTM1, GSTT1 and GSTP1) and acute leukemia risk in Asians: a meta-analysis. Asian Pac J Cancer Prev 15(5):2075–2081

    Article  PubMed  Google Scholar 

  104. Wu J, Hankinson J, Kopec-Harding K, Custovic A, Simpson A (2013) Interaction between glutathione S-transferase variants, maternal smoking and childhood wheezing changes with age. Pediatr Allergy Immunol 24(5):501–508. doi:10.1111/pai.12086

    Article  PubMed  Google Scholar 

  105. Choi YH, Kim JH, Hong YC (2013) CYP1A1 genetic polymorphism and polycyclic aromatic hydrocarbons on pulmonary function in the elderly: haplotype-based approach for gene-environment interaction. Toxicol Lett 221(3):185–190. doi:10.1016/j.toxlet.2013.06.229

    Article  CAS  PubMed  Google Scholar 

  106. Silva MM, Da Fonseca CO, Moura-Neto R, Carvalho JF, Quirico-Santos T, Carvalho MG (2013) Influence of GSTM1 and GSTT1 polymorphisms on the survival rate of patients with malignant glioma under perillyl alcohol-based therapy. Genet Mol Res 12(2):1621–1630. doi:10.4238/2013.May.14.2

    Article  CAS  PubMed  Google Scholar 

  107. Lampe JW (2007) Diet, genetic polymorphisms, detoxification, and health risks. Altern Ther Health Med 13(2):S108–S111

    PubMed  Google Scholar 

  108. Dougherty D, Garte S, Barchowsky A, Zmuda J, Taioli E (2008) NQO1, MPO, CYP2E1, GSTT1 and GSTM1 polymorphisms and biological effects of benzene exposure–a literature review. Toxicol Lett 182(1–3):7–17. doi:10.1016/j.toxlet.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  109. De Luca A, Federici L, De Canio M, Stella L, Caccuri AM (2012) New insights into the mechanism of JNK1 inhibition by glutathione transferase P1-1. Biochemistry 51(37):7304–7312. doi:10.1021/bi300559m

    Article  PubMed  CAS  Google Scholar 

  110. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson C, Wolf CR, Gama MJ (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol Neurobiol 45(3):466–477. doi:10.1007/s12035-012-8266-9

    Article  CAS  PubMed  Google Scholar 

  111. Sau A, Filomeni G, Pezzola S, D'Aguanno S, Tregno FP, Urbani A, Serra M, Pasello M, Picci P, Federici G, Caccuri AM (2012) Targeting GSTP1-1 induces JNK activation and leads to apoptosis in cisplatin-sensitive and -resistant human osteosarcoma cell lines. Mol Biosyst 8(4):994–1006. doi:10.1039/c1mb05295k

    Article  CAS  PubMed  Google Scholar 

  112. Sanchez-Gomez FJ, Diez-Dacal B, Pajares MA, Llorca O, Perez-Sala D (2010) Cyclopentenone prostaglandins with dienone structure promote cross-linking of the chemoresistance-inducing enzyme glutathione transferase P1-1. Mol Pharmacol 78(4):723–733. doi:10.1124/mol.110.065391

    Article  CAS  PubMed  Google Scholar 

  113. Sanchez-Gomez FJ, Dorado CG, Ayuso P, Agundez JA, Pajares MA, Perez-Sala D (2013) Modulation of GSTP1-1 oligomerization by electrophilic inflammatory mediators and reactive drugs. Inflamm Allergy Drug Targets 12(3):162–171

    Article  CAS  PubMed  Google Scholar 

  114. Quesada-Soriano I, Primavera A, Casas-Solvas JM, Tellez-Sanz R, Baron C, Vargas-Berenguel A, Lo Bello M, Garcia-Fuentes L (2012) Identifying and characterizing binding sites on the irreversible inhibition of human glutathione S-transferase P1-1 by S-thiocarbamoylation. Chembiochem 13(11):1594–1604. doi:10.1002/cbic.201200210

    Article  CAS  PubMed  Google Scholar 

  115. Liu D, Liu Y, Ran L, Shang H, Li D (2013) GSTT1 and GSTM1 polymorphisms and prostate cancer risk in Asians: a systematic review and meta-analysis. Tumour Biol 34(5):2539–2544. doi:10.1007/s13277-013-0778-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Li J, Long J, Hu Y, Tan A, Guo X, Zhang S (2012) Glutathione S-transferase M1, T1, and P1 polymorphisms and thyroid cancer risk: a meta-analysis. Cancer Epidemiol 36(6):e333–e340. doi:10.1016/j.canep.2012.06.002

    Article  CAS  PubMed  Google Scholar 

  117. Peng H, He Q, Zhu J, Peng C (2013) Effect of GSTM1 polymorphism on risks of basal cell carcinoma and squamous cell carcinoma: a meta-analysis. Tumour Biol 34(2):675–681. doi:10.1007/s13277-012-0595-9

    Article  CAS  PubMed  Google Scholar 

  118. Huang W, Wang W, Zhou M, Zhang X (2013) Association of single-nucleotide polymorphism rs4236601 near caveolin 1 and 2 with primary open-angle glaucoma: a meta-analysis. Clin Experiment Ophthalmol. doi:10.1111/ceo.12201

    Google Scholar 

  119. Eslami S, Sahebkar A (2014) Glutathione-s-transferase m1 and t1 null genotypes are associated with hypertension risk: a systematic review and meta-analysis of 12 studies. Curr Hypertens Rep 16(6):432. doi:10.1007/s11906-014-0432-1

    Article  PubMed  CAS  Google Scholar 

  120. Minelli C, Wei I, Sagoo G, Jarvis D, Shaheen S, Burney P (2011) Interactive effects of antioxidant genes and air pollution on respiratory function and airway disease: a HuGE review. Am J Epidemiol 173(6):603–620. doi:10.1093/aje/kwq403

    Article  PubMed  Google Scholar 

  121. Piacentini S, Polimanti R, Simonelli I, Donno S, Pasqualetti P, Manfellotto D, Fuciarelli M (2013) Glutathione S-transferase polymorphisms, asthma susceptibility and confounding variables: a meta-analysis. Mol Biol Rep 40(4):3299–3313. doi:10.1007/s11033-012-2405-2

    Article  CAS  PubMed  Google Scholar 

  122. Lu J, Holmgren A (2014) The thioredoxin antioxidant system. Free Radic Biol Med 66:75–87. doi:10.1016/j.freeradbiomed.2013.07.036

    Article  CAS  PubMed  Google Scholar 

  123. Branco V, Godinho-Santos A, Goncalves J, Lu J, Holmgren A, Carvalho C (2014) Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2014.04.030

    PubMed  Google Scholar 

  124. Go YM, Jones DP (2013) The redox proteome. J Biol Chem. doi:10.1074/jbc.R113.464131

    Google Scholar 

  125. Steinbrenner H, Speckmann B, Sies H (2013) Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 19(2):181–191. doi:10.1089/ars.2013.5246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Wang P, Wu Y, Li X, Ma X, Zhong L (2013) Thioredoxin and thioredoxin reductase control tissue factor activity by thiol redox-dependent mechanism. J Biol Chem 288(5):3346–3358. doi:10.1074/jbc.M112.418046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. Lothrop AP, Snider GW, Ruggles EL, Hondal RJ (2014) Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium? Biochemistry 53(3):554–565. doi:10.1021/bi400651x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Go YM, Roede JR, Walkers D, Duong DM, Seyfried NT, Orr M, Liang Y, Pennell KD, Jones DP (2013) Selective targeting of the cysteine proteome by thioredoxin and glutathione redox systems. Mol Cell Proteomics. doi:10.1074/mcp.M113.030437

    Google Scholar 

  129. Jones DP (2006) Extracellular redox state: refining the definition of oxidative stress in aging. Rejuvenation Res 9(2):169–181

    Article  CAS  PubMed  Google Scholar 

  130. Jones DP, Park Y, Gletsu-Miller N, Liang Y, Yu T, Accardi CJ, Ziegler TR (2011) Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition 27(2):199–205. doi:10.1016/j.nut.2010.01.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Moreno ML, Escobar J, Izquierdo-Alvarez A, Gil A, Perez S, Pereda J, Zapico I, Vento M, Sabater L, Marina A, Martinez-Ruiz A, Sastre J (2014) Disulfide stress: a novel type of oxidative stress in acute pancreatitis. Free Radic Biol Med 70:265–277. doi:10.1016/j.freeradbiomed.2014.01.009

    Article  CAS  PubMed  Google Scholar 

  132. Go YM, Jones DP (2011) Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 50(4):495–509. doi:10.1016/j.freeradbiomed.2010.11.029, S0891-5849(10)01401-2 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71C:196–207. doi:10.1016/j.freeradbiomed.2014.03.025

    Article  CAS  Google Scholar 

  134. Groitl B, Jakob U (2014) Thiol-based redox switches. Biochim Biophys Acta. doi:10.1016/j.bbapap.2014.03.007

    PubMed Central  PubMed  Google Scholar 

  135. van Vliet AR, Verfaillie T, Agostinis P (2014) New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2014.03.009

    Google Scholar 

  136. Sies H (2007) Biological redox systems and oxidative stress. Cell Mol Life Sci 64(17):2181–2188. doi:10.1007/s00018-007-7230-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lou Ann S. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brown, L.A.S., Jones, D.P. (2015). Glutathione and Thiols. In: Roberts, S., Kehrer, J., Klotz, LO. (eds) Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-19096-9_7

Download citation

Publish with us

Policies and ethics