Skip to main content

Lipid Oxidation

  • Chapter

Abstract

This chapter summarizes types of lipid oxidation – both enzymatic and non-enzymatic – and discusses reactivity, biological effects and metabolism of lipid oxidation products. Mechanistic explanations are provided for the diverse biological effects of lipid oxidation products that range from deleterious to regulatory and even to protective. Finally, analytical techniques used for detection of lipid oxidation and lipid oxidation products are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AKR:

Aldo-keto reductase

Ch:

Cholesterol

CYP450:

Cytochrome P450

ECs:

Endothelial cells

EGFR:

Epidermal growth factor receptor

eNOS:

Endothelial nitric oxide synthase

EPA:

Eicosapentaenoic acid

5-EpoxyCh:

5,6-epoxycholesterol

HETEs:

Hydroxyeicosatetraenoic acids

HPETEs:

Hydroperoxyeicosatetraenoic acid

4-HNE:

4-hydroxynonenal

HO-1:

Heme oxygenase-1

HPLC:

High performance liquid chromatography

HPODEs:

Hydroperoxyoctadecadienoic acid

ICAM1:

Intracellular cell adhesion molecule-1

isoLGs:

Iso-levuglandins

KEAP1:

Kelch-like ECH-associated protein 1

KOdiA-PC:

Palmitoyl-2-(5-keto-6-octene-dioyl)-phosphatidylcholine

MAPK:

Mitogen activated protein kinase

MDA:

Malondialdehyde

MS:

Mass spectrometry

NFκB:

Nuclear factor-kappa B

NRF2:

Nuclear factor (erythroid-derived 2)-like 2

7α-OHCh:

7α-hydroxycholestrol

7α-OOHCh:

7α-hydroperoxycholesterol

oxPAPC:

Oxidized palmitoyl arachidonoyl phosphatidylcholine

PAF:

Platelet activating factor

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PECPC:

1-palmitoyl-2-cyclopentenone-sn-glycero-3-phosphocholine

PGG2 :

Prostaglandin G2

PGH2 :

Prostaglandin H2

PON-1:

Paraoxonase-1

POVPC:

1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine

PPAR:

Peroxisome proliferator-activated receptor

PS:

Phosphatidylserine

PUFAs:

Polyunsaturated fatty acids

ROS:

Reactive oxygen species

SMase:

Sphingomyelinase

TLRs:

Toll-like receptors

VCAM-1:

Vascular cell adhesion molecule-1

VSMCs:

Vascular smooth muscle cells

References

  1. Calder PC (2006) Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 75:197–202

    Article  CAS  PubMed  Google Scholar 

  2. Chisolm GM, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28:1815–1826

    Article  CAS  PubMed  Google Scholar 

  3. Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113

    Article  CAS  PubMed  Google Scholar 

  4. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  5. Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    Article  CAS  PubMed  Google Scholar 

  6. Vejux A, Malvitte L, Lizard G (2008) Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41:545–556

    Article  CAS  PubMed  Google Scholar 

  7. McIntyre TM (2012) Bioactive oxidatively truncated phospholipids in inflammation and apoptosis: formation, targets, and inactivation. Biochim Biophys Acta Biomembr 1818:2456–2464

    Article  CAS  Google Scholar 

  8. Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stockl J (2010) Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12:1009–1059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Haeggstrom JZ, Funk CD (2011) Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 111:5866–5898

    Article  PubMed  CAS  Google Scholar 

  10. Joo YC, Oh DK (2012) Lipoxygenases: potential starting biocatalysts for the synthesis of signaling compounds. Biotechnol Adv 30:1524–1532

    Article  CAS  PubMed  Google Scholar 

  11. Smith WL, Dewitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  12. Smith WL, Rieke CJ, Thuresson ED, Mulichak AM, Garavito RM (2000) Fatty-acid substrate interactions with cyclo-oxygenases. Ernst Schering Res Found Workshop 53–64

    Google Scholar 

  13. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  14. Konkel A, Schunck WH (2011) Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. Biochim Biophys Acta 1814:210–222

    Article  CAS  PubMed  Google Scholar 

  15. Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185

    Article  CAS  PubMed  Google Scholar 

  16. Fer M, Dreano Y, Lucas D, Corcos L, Salaun JP, Berthou F, Amet Y (2008) Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes P450. Arch Biochem Biophys 471:116–125

    Article  CAS  PubMed  Google Scholar 

  17. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  CAS  PubMed  Google Scholar 

  18. Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N (2010) Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 44:1172–1202

    Article  CAS  PubMed  Google Scholar 

  19. Liebler DC (1993) The role of metabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 23:147–169

    Article  CAS  PubMed  Google Scholar 

  20. Larstad M, Loh C, Ljungkvist G, Olin AC, Toren K (2002) Determination of ethane, pentane and isoprene in exhaled air using a multi-bed adsorbent and end-cut gas-solid chromatography. Analyst 127:1440–1445

    Article  PubMed  CAS  Google Scholar 

  21. Spickett CM (2013) The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biol 1:145–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Esterbauer H, Benedetti A, Lang J, Fulceri R, Fauler G, Comporti M (1986) Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation. Biochim Biophys Acta 876:154–166

    Article  CAS  PubMed  Google Scholar 

  23. Schneider C, Porter NA, Brash AR (2008) Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem 283:15539–15543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gu X, Salomon RG (2012) Fragmentation of a linoleate-derived gamma-hydroperoxy-alpha, beta-unsaturated epoxide to gamma-hydroxy- and gamma-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical. Free Radic Biol Med 52:601–606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pryor WA, Stanley JP (1975) Letter: A suggested mechanism for the production of malonaldehyde during the autoxidation of polyunsaturated fatty acids. Nonenzymatic production of prostaglandin endoperoxides during autoxidation. J Org Chem 40:3615–3617

    Article  CAS  PubMed  Google Scholar 

  26. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  CAS  PubMed  Google Scholar 

  27. Roberts LJ 2nd, Brame CJ, Chen Y, Morrow JD, Salomon RG (1999) Formation of reactive products of the isoprostane pathway: isolevuglandins and cyclopentenone isoprostanes. Adv Exp Med Biol 469:335–341

    Article  CAS  PubMed  Google Scholar 

  28. Brooks JD, Milne GL, Yin H, Sanchez SC, Porter NA, Morrow JD (2008) Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 283:12043–12055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Salomon RG (2005) Levuglandins and isolevuglandins: stealthy toxins of oxidative injury. Antioxid Redox Signal 7:185–201

    Article  CAS  PubMed  Google Scholar 

  30. Toppo S, Flohe L, Ursini F, Vanin S, Maiorino M (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:1486–1500

    Article  CAS  PubMed  Google Scholar 

  31. Ursini F, Maiorino M, Roveri A (1997) Phospholipid hydroperoxide glutathione peroxidase (PHGPx): more than an antioxidant enzyme? Biomed Environ Sci 10:327–332

    CAS  PubMed  Google Scholar 

  32. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62–70

    Article  CAS  PubMed  Google Scholar 

  33. Spite M, Baba SP, Ahmed Y, Barski OA, Nijhawan K, Petrash JM, Bhatnagar A, Srivastava S (2007) Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes. Biochem J 405:95–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Martin HJ, Maser E (2009) Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. Chem Biol Interact 178:145–150

    Article  CAS  PubMed  Google Scholar 

  35. Srivastava S, Conklin DJ, Liu SQ, Prakash N, Boor PJ, Srivastava SK, Bhatnagar A (2001) Identification of biochemical pathways for the metabolism of oxidized low-density lipoprotein derived aldehyde-4-hydroxy trans-2-nonenal in vascular smooth muscle cells. Atherosclerosis 158:339–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rubbo H, Trostchansky A, O’Donnell VB (2009) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch Biochem Biophys 484:167–172

    Article  CAS  PubMed  Google Scholar 

  37. Spickett CM (2007) Chlorinated lipids and fatty acids: an emerging role in pathology. Pharmacol Ther 115:400–409

    Article  CAS  PubMed  Google Scholar 

  38. Winterbourn CC, van den Berg JJ, Roitman E, Kuypers FA (1992) Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys 296:547–555

    Article  CAS  PubMed  Google Scholar 

  39. Spickett CM, Rennie N, Winter H, Zambonin L, Landi L, Jerlich A, Schaur RJ, Pitt AR (2001) Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electrospray [correction of electroscopy] MS. Biochem J 355:449–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Spalteholz H, Panasenko OM, Arnhold J (2006) Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase. Arch Biochem Biophys 445:225–234

    Article  CAS  PubMed  Google Scholar 

  41. Albert CJ, Crowley JR, Hsu FF, Thukkani AK, Ford DA (2001) Reactive chlorinating species produced by myeloperoxidase target the vinyl ether bond of plasmalogens: identification of 2-chlorohexadecanal. J Biol Chem 276:23733–23741

    Article  CAS  PubMed  Google Scholar 

  42. Thukkani AK, Hsu FF, Crowley JR, Wysolmerski RB, Albert CJ, Ford DA (2002) Reactive chlorinating species produced during neutrophil activation target tissue plasmalogens: production of the chemoattractant, 2-chlorohexadecanal. J Biol Chem 277:3842–3849

    Article  CAS  PubMed  Google Scholar 

  43. Nusshold C, Kollroser M, Kofeler H, Rechberger G, Reicher H, Ullen A, Bernhart E, Waltl S, Kratzer I, Hermetter A, Hackl H, Trajanoski Z, Hrzenjak A, Malle E, Sattler W (2010) Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic Biol Med 48:1588–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Domingues MR, Reis A, Domingues P (2008) Mass spectrometry analysis of oxidized phospholipids. Chem Phys Lipids 156:1–12

    Article  CAS  PubMed  Google Scholar 

  45. Maciel E, DA Silva RN, Simoes C, Domingues P, Domingues MR (2011) Structural characterization of oxidized glycerophosphatidylserine: evidence of polar head oxidation. J Am Soc Mass Spectrom 22:1804–1814

    Article  CAS  PubMed  Google Scholar 

  46. Guo L, Chen Z, Amarnath V, Davies SS (2012) Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radic Biol Med 53:1226–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Colles SM, Irwin KC, Chisolm GM (1996) Roles of multiple oxidized LDL lipids in cellular injury: dominance of 7 beta-hydroperoxycholesterol. J Lipid Res 37:2018–2028

    CAS  PubMed  Google Scholar 

  48. Domingues RM, Domingues P, Melo T, Perez-Sala D, Reis A, Spickett CM (2013) Lipoxidation adducts with peptides and proteins: deleterious modifications or signaling mechanisms? J Proteomics 92:110–131

    Article  CAS  PubMed  Google Scholar 

  49. del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    Article  PubMed  Google Scholar 

  50. Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M (2007) Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev 27:817–868

    Article  CAS  PubMed  Google Scholar 

  51. Spickett CM, Reis A, Pitt AR (2013) Use of narrow mass-window, high-resolution extracted product ion chromatograms for the sensitive and selective identification of protein modifications. Anal Chem 85:4621–4627

    Article  CAS  PubMed  Google Scholar 

  52. Hesketh TR, Smith GA, Houslay MD, Mcgill KA, Birdsall NJ, Metcalfe JC, Warren GB (1976) Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry 15:4145–4151

    Article  CAS  PubMed  Google Scholar 

  53. Volinsky R, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P, Kinnunen PK (2011) Oxidized phosphatidylcholines facilitate phospholipid flip-flop in liposomes. Biophys J 101:1376–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wallgren M, Beranova L, Pham QD, Linh K, Lidman M, Procek J, Cyprych K, Kinnunen PK, Hof M, Grobner G (2013) Impact of oxidized phospholipids on the structural and dynamic organization of phospholipid membranes: a combined DSC and solid state NMR study. Faraday Discuss 161:499–513, discussion 563-89

    Article  CAS  PubMed  Google Scholar 

  55. Guo L, Chen Z, Cox BE, Amarnath V, Epand RF, Epand RM, Davies SS (2011) Phosphatidylethanolamines modified by gamma-ketoaldehyde (gammaKA) induce endoplasmic reticulum stress and endothelial activation. J Biol Chem 286:18170–18180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J, Salomon RG, Hazen SL (2008) The lipid whisker model of the structure of oxidized cell membranes. J Biol Chem 283:2385–2396

    Article  CAS  PubMed  Google Scholar 

  57. Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  CAS  PubMed  Google Scholar 

  58. Nam TG (2011) Lipid peroxidation and its toxicological implications. Toxicol Res 27:1–6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Piga R, Saito Y, Yoshida Y, Niki E (2007) Cytotoxic effects of various stressors on PC12 cells: involvement of oxidative stress and effect of antioxidants. Neurotoxicology 28:67–75

    Article  CAS  PubMed  Google Scholar 

  60. Vissers MC, Carr AC, Winterbour CC (2001) Fatty acid chlorohydrins and bromohydrins are cytotoxic to human endothelial cells. Redox Rep 6:49–55

    Article  CAS  PubMed  Google Scholar 

  61. Dever G, Stewart LJ, Pitt AR, Spickett CM (2003) Phospholipid chlorohydrins cause ATP depletion and toxicity in human myeloid cells. FEBS Lett 540:245–250

    Article  CAS  PubMed  Google Scholar 

  62. Dever G, Wainwright CL, Kennedy S, Spickett CM (2006) Fatty acid and phospholipid chlorohydrins cause cell stress and endothelial adhesion. Acta Biochim Pol 53:761–768

    CAS  PubMed  Google Scholar 

  63. Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113

    Article  CAS  PubMed  Google Scholar 

  64. Schmidley JW, Dadson J, Iyer RS, Salomon RG (1992) Brain tissue injury and blood-brain barrier opening induced by injection of LGE2 or PGE2. Prostaglandins Leukot Essent Fatty Acids 47:105–110

    Article  CAS  PubMed  Google Scholar 

  65. Stavrovskaya IG, Baranov SV, Guo X, Davies SS, Roberts LJ 2nd, Kristal BS (2010) Reactive gamma-ketoaldehydes formed via the isoprostane pathway disrupt mitochondrial respiration and calcium homeostasis. Free Radic Biol Med 49:567–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Fruhwirth GO, Moumtzi A, Loidl A, Ingolic E, Hermetter A (2006) The oxidized phospholipids POVPC and PGPC inhibit growth and induce apoptosis in vascular smooth muscle cells. Biochim Biophys Acta 1761:1060–1069

    Article  CAS  PubMed  Google Scholar 

  67. Loidl A, Sevcsik E, Riesenhuber G, Deigner HP, Hermetter A (2003) Oxidized phospholipids in minimally modified low density lipoprotein induce apoptotic signaling via activation of acid sphingomyelinase in arterial smooth muscle cells. J Biol Chem 278:32921–32928

    Article  CAS  PubMed  Google Scholar 

  68. Loidl A, Claus R, Ingolic E, Deigner HP, Hermetter A (2004) Role of ceramide in activation of stress-associated MAP kinases by minimally modified LDL in vascular smooth muscle cells. Biochim Biophys Acta 1690:150–158

    Article  CAS  PubMed  Google Scholar 

  69. Qin J, Testai FD, Dawson S, Kilkus J, Dawson G (2009) Oxidized phosphatidylcholine formation and action in oligodendrocytes. J Neurochem 110:1388–1399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Breusing N, Grune T (2008) Regulation of proteasome-mediated protein degradation during oxidative stress and aging. Biol Chem 389:203–209

    Article  CAS  PubMed  Google Scholar 

  71. Davies SS, Amarnath V, Montine KS, Bernoud-Hubac N, Boutaud O, Montine TJ, Roberts LJ 2nd (2002) Effects of reactive gamma-ketoaldehydes formed by the isoprostane pathway (isoketals) and cyclooxygenase pathway (levuglandins) on proteasome function. FASEB J 16:715–717

    CAS  PubMed  Google Scholar 

  72. Leonarduzzi G, Sottero B, Verde V, Poli G, Preedy V, Watson R (2005) Oxidized products of cholesterol: toxic effects. Rev Food Nutr Toxic 3:129–164

    CAS  Google Scholar 

  73. Biasi F, Mascia C, Astegiano M, Chiarpotto E, Nano M, Vizio B, Leonarduzzi G, Poli G (2009) Pro-oxidant and proapoptotic effects of cholesterol oxidation products on human colonic epithelial cells: a potential mechanism of inflammatory bowel disease progression. Free Radic Biol Med 47:1731–1741

    Article  CAS  PubMed  Google Scholar 

  74. Appukuttan A, Kasseckert SA, Kumar S, Reusch HP, Ladilov Y (2013) Oxysterol-induced apoptosis of smooth muscle cells is under the control of a soluble adenylyl cyclase. Cardiovasc Res 99:734–742

    Article  CAS  PubMed  Google Scholar 

  75. Lordan S, O’Brien NM, Mackrill JJ (2009) The role of calcium in apoptosis induced by 7beta-hydroxycholesterol and cholesterol-5beta,6beta-epoxide. J Biochem Mol Toxicol 23:324–332

    Article  CAS  PubMed  Google Scholar 

  76. Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic Biol Med 37:1963–1985

    Article  CAS  PubMed  Google Scholar 

  77. Isik A, Koca SS, Ustundag B, Celik H, Yildirim A (2007) Paraoxonase and arylesterase levels in rheumatoid arthritis. Clin Rheumatol 26:342–348

    Article  CAS  PubMed  Google Scholar 

  78. Matot I, Manevich Y, Al-Mehdi AB, Song C, Fisher AB (2003) Fluorescence imaging of lipid peroxidation in isolated rat lungs during nonhypoxic lung ischemia. Free Radic Biol Med 34:785–790

    Article  CAS  PubMed  Google Scholar 

  79. Ravandi A, Babaei S, Leung R, Monge JC, Hoppe G, Hoff H, Kamido H, Kuksis A (2004) Phospholipids and oxophospholipids in atherosclerotic plaques at different stages of plaque development. Lipids 39:97–109

    CAS  PubMed  Google Scholar 

  80. Aldrovandi M, O’donnell VB (2013) Oxidized PLs and vascular inflammation. Curr Atheroscler Rep 15:323

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Uchida K, Itakura K, Kawakishi S, Hiai H, Toyokuni S, Stadtman ER (1995) Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys 324:241–248

    Article  CAS  PubMed  Google Scholar 

  82. Perluigi M, Coccia R, Butterfield DA (2012) 4-Hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: a toxic combination illuminated by redox proteomics studies. Antioxid Redox Signal 17:1590–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Fessel JP, Hulette C, Powell S, Roberts LJ 2nd, Zhang J (2003) Isofurans, but not F2-isoprostanes, are increased in the substantia nigra of patients with Parkinson’s disease and with dementia with Lewy body disease. J Neurochem 85:645–650

    Article  CAS  PubMed  Google Scholar 

  84. Govindarajan B, Junk A, Algeciras M, Salomon RG, Bhattacharya SK (2009) Increased isolevuglandin-modified proteins in glaucomatous astrocytes. Mol Vis 15:1079–1091

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Parthasarathy S, Rankin SM (1992) Role of oxidized low density lipoprotein in atherogenesis. Prog Lipid Res 31:127–143

    Article  CAS  PubMed  Google Scholar 

  86. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Watson AD, Leitinger N, Navab M, Faull KF, Horkko S, Witztum JL, Palinski W, Schwenke D, Salomon RG, Sha W, Subbanagounder G, Fogelman AM, Berliner JA (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem 272:13597–13607

    Article  CAS  PubMed  Google Scholar 

  88. Huber J, Furnkranz A, Bochkov VN, Patricia MK, Lee H, Hedrick CC, Berliner JA, Binder BR, Leitinger N (2006) Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase. J Lipid Res 47:1054–1062

    Article  CAS  PubMed  Google Scholar 

  89. Leitinger N, Tyner TR, Oslund L, Rizza C, Subbanagounder G, Lee H, Shih PT, Mackman N, Tigyi G, Territo MC, Berliner JA, Vora DK (1999) Structurally similar oxidized phospholipids differentially regulate endothelial binding of monocytes and neutrophils. Proc Natl Acad Sci U S A 96:12010–12015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kadl A, Galkina E, Leitinger N (2009) Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation. Arthritis Rheum 60:1362–1371

    Article  PubMed Central  PubMed  Google Scholar 

  91. Gargalovic PS, Imura M, Zhang B, Gharavi NM, Clark MJ, Pagnon J, Yang WP, He A, Truong A, Patel S, Nelson SF, Horvath S, Berliner JA, Kirchgessner TG, Lusis AJ (2006) Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids. Proc Natl Acad Sci U S A 103:12741–12746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Chatterjee S, Berliner JA, Subbanagounder GG, Bhunia AK, Koh S (2004) Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation. Glycoconj J 20:331–338

    Article  CAS  PubMed  Google Scholar 

  93. Johnstone SR, Ross J, Rizzo MJ, Straub AC, Lampe PD, Leitinger N, Isakson BE (2009) Oxidized phospholipid species promote in vivo differential cx43 phosphorylation and vascular smooth muscle cell proliferation. Am J Pathol 175:916–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Leitinger N (2005) Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol Nutr Food Res 49:1063–1071

    Article  CAS  PubMed  Google Scholar 

  95. Pidkovka NA, Cherepanova OA, Yoshida T, Alexander MR, Deaton RA, Thomas JA, Leitinger N, Owens GK (2007) Oxidized phospholipids induce phenotypic switching of vascular smooth muscle cells in vivo and in vitro. Circ Res 101:792–801

    Article  CAS  PubMed  Google Scholar 

  96. Cherepanova OA, Pidkovka NA, Sarmento OF, Yoshida T, Gan Q, Adiguzel E, Bendeck MP, Berliner J, Leitinger N, Owens GK (2009) Oxidized phospholipids induce type VIII collagen expression and vascular smooth muscle cell migration. Circ Res 104:609–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Gargiulo S, Gamba P, Testa G, Sottero B, Maina M, Guina T, Biasi F, Poli G, Leonarduzzi G (2012) Molecular signaling involved in oxysterol-induced beta1-integrin over-expression in human macrophages. Int J Mol Sci 13:14278–14293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Buttari B, Segoni L, Profumo E, D’arcangelo D, Rossi S, Facchiano F, Businaro R, Iuliano L, Rigano R (2013) 7-Oxo-cholesterol potentiates pro-inflammatory signaling in human M1 and M2 macrophages. Biochem Pharmacol 86:130–137

    Article  CAS  PubMed  Google Scholar 

  99. Lemaire S, Lizard G, Monier S, Miguet C, Gueldry S, Volot F, Gambert P, Neel D (1998) Different patterns of IL-1beta secretion, adhesion molecule expression and apoptosis induction in human endothelial cells treated with 7alpha-, 7beta-hydroxycholesterol, or 7-ketocholesterol. FEBS Lett 440:434–439

    Article  CAS  PubMed  Google Scholar 

  100. Liao PL, Cheng YW, Li CH, Wang YT, Kang JJ (2010) 7-Ketocholesterol and cholesterol-5alpha,6alpha-epoxide induce smooth muscle cell migration and proliferation through the epidermal growth factor receptor/phosphoinositide 3-kinase/Akt signaling pathways. Toxicol Lett 197:88–96

    Article  CAS  PubMed  Google Scholar 

  101. Gharavi NM, Baker NA, Mouillesseaux KP, Yeung W, Honda HM, Hsieh X, Yeh M, Smart EJ, Berliner JA (2006) Role of endothelial nitric oxide synthase in the regulation of SREBP activation by oxidized phospholipids. Circ Res 98:768–776

    Article  CAS  PubMed  Google Scholar 

  102. Birukova AA, Starosta V, Tian X, Higginbotham K, Koroniak L, Berliner JA, Birukov KG (2013) Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res 161:495–504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Bhuyan KC, Master RW, Coles RS, Bhuyan DK (1986) Molecular mechanisms of cataractogenesis: IV. Evidence of phospholipid. malondialdehyde adduct in human senile cataract. Mech Ageing Dev 34:289–296

    Article  CAS  PubMed  Google Scholar 

  104. Usatyuk PV, Natarajan V (2004) Role of mitogen-activated protein kinases in 4-hydroxy-2-nonenal-induced actin remodeling and barrier function in endothelial cells. J Biol Chem 279:11789–11797

    Article  CAS  PubMed  Google Scholar 

  105. Usatyuk PV, Parinandi NL, Natarajan V (2006) Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 281:35554–35566

    Article  CAS  PubMed  Google Scholar 

  106. Chen ZH, Saito Y, Yoshida Y, Sekine A, Noguchi N, Niki E (2005) 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J Biol Chem 280:41921–41927

    Article  CAS  PubMed  Google Scholar 

  107. Chen ZH, Yoshida Y, Saito Y, Sekine A, Noguchi N, Niki E (2006) Induction of adaptive response and enhancement of PC12 cell tolerance by 7-hydroxycholesterol and 15-deoxy-delta(12,14)-prostaglandin J2 through up-regulation of cellular glutathione via different mechanisms. J Biol Chem 281:14440–14445

    Article  CAS  PubMed  Google Scholar 

  108. Moellering DR, Levonen AL, Go YM, Patel RP, Dickinson DA, Forman HJ, Darley-Usmar VM (2002) Induction of glutathione synthesis by oxidized low-density lipoprotein and 1-palmitoyl-2-arachidonyl phosphatidylcholine: protection against quinone-mediated oxidative stress. Biochem J 362:51–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Dickinson DA, Iles KE, Watanabe N, Iwamoto T, Zhang H, Krzywanski DM, Forman HJ (2002) 4-hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic Biol Med 33:974

    Article  CAS  PubMed  Google Scholar 

  110. Zhang H, Court N, Forman HJ (2007) Submicromolar concentrations of 4-hydroxynonenal induce glutamate cysteine ligase expression in HBE1 cells. Redox Rep 12:101–106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Zhang H, Forman HJ (2009) Signaling pathways involved in phase II gene induction by alpha, beta-unsaturated aldehydes. Toxicol Ind Health 25:269–278

    Article  PubMed Central  PubMed  Google Scholar 

  112. Jyrkkanen HK, Kansanen E, Inkala M, Kivela AM, Hurttila H, Heinonen SE, Goldsteins G, Jauhiainen S, Tiainen S, Makkonen H, Oskolkova O, Afonyushkin T, Koistinaho J, Yamamoto M, Bochkov VN, Yla-Herttuala S, Levonen AL (2008) Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ Res 103:e1–e9

    Article  CAS  PubMed  Google Scholar 

  113. Gruber F, Mayer H, Lengauer B, Mlitz V, Sanders JM, Kadl A, Bilban M, DE Martin R, Wagner O, Kensler TW, Yamamoto M, Leitinger N, Tschachler E (2010) NF-E2-related factor 2 regulates the stress response to UVA-1-oxidized phospholipids in skin cells. FASEB J 24:39–48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  114. Wright MM, Kim J, Hock TD, Leitinger N, Freeman BA, Agarwal A (2009) Human haem oxygenase-1 induction by nitro-linoleic acid is mediated by cAMP, AP-1 and E-box response element interactions. Biochem J 422:353–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kronke G, Bochkov VN, Huber J, Gruber F, Bluml S, Furnkranz A, Kadl A, Binder BR, Leitinger N (2003) Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J Biol Chem 278:51006–51014

    Article  PubMed  CAS  Google Scholar 

  116. Miller YI, Chang MK, Binder CJ, Shaw PX, Witztum JL (2003) Oxidized low density lipoprotein and innate immune receptors. Curr Opin Lipidol 14:437–445

    Article  CAS  PubMed  Google Scholar 

  117. Subbanagounder G, Deng Y, Borromeo C, Dooley AN, Berliner JA, Salomon RG (2002) Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vascul Pharmacol 38:201–209

    Article  CAS  PubMed  Google Scholar 

  118. Bochkov VN, Kadl A, Huber J, Gruber F, Binder BR, Leitinger N (2002) Protective role of phospholipid oxidation products in endotoxin-induced tissue damage. Nature 419:77–81

    Article  CAS  PubMed  Google Scholar 

  119. Erridge C, Kennedy S, Spickett CM, Webb DJ (2008) Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem 283:24748–24759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Birukov KG, Bochkov VN, Birukova AA, Kawkitinarong K, Rios A, Leitner A, Verin AD, Bokoch GM, Leitinger N, Garcia JG (2004) Epoxycyclopentenone-containing oxidized phospholipids restore endothelial barrier function via Cdc42 and Rac. Circ Res 95:892–901

    Article  CAS  PubMed  Google Scholar 

  121. Starosta V, Wu T, Zimman A, Pham D, Tian X, Oskolkova O, Bochkov V, Berliner JA, Birukova AA, Birukov KG (2012) Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine. Am J Respir Cell Mol Biol 46:331–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Torocsik D, Szanto A, Nagy L (2009) Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol Aspects Med 30:134–152

    Article  PubMed  CAS  Google Scholar 

  123. Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM (1995) 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83:803–812

    Article  CAS  PubMed  Google Scholar 

  124. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240

    Article  CAS  PubMed  Google Scholar 

  125. Schild RL, Schaiff WT, Carlson MG, Cronbach EJ, Nelson DM, Sadovsky Y (2002) The activity of PPAR gamma in primary human trophoblasts is enhanced by oxidized lipids. J Clin Endocrinol Metab 87:1105–1110

    CAS  PubMed  Google Scholar 

  126. Davies SS, Pontsler AV, Marathe GK, Harrison KA, Murphy RC, Hinshaw JC, Prestwich GD, Hilaire AS, Prescott SM, Zimmerman GA, Mcintyre TM (2001) Oxidized alkyl phospholipids are specific, high affinity peroxisome proliferator-activated receptor gamma ligands and agonists. J Biol Chem 276:16015–16023

    Article  CAS  PubMed  Google Scholar 

  127. Hammond VJ, Morgan AH, Lauder S, Thomas CP, Brown S, Freeman BA, Lloyd CM, Davies J, Bush A, Levonen AL, Kansanen E, Villacorta L, Chen YE, Porter N, Garcia-Diaz YM, Schopfer FJ, O’donnell VB (2012) Novel keto-phospholipids are generated by monocytes and macrophages, detected in cystic fibrosis, and activate peroxisome proliferator-activated receptor-gamma. J Biol Chem 287:41651–41666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Lee H, Shi W, Tontonoz P, Wang S, Subbanagounder G, Hedrick CC, Hama S, Borromeo C, Evans RM, Berliner JA, Nagy L (2000) Role for peroxisome proliferator-activated receptor alpha in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ Res 87:516–521

    Article  CAS  PubMed  Google Scholar 

  129. Balakumar P, Kathuria S (2012) Submaximal PPARgamma activation and endothelial dysfunction: new perspectives for the management of cardiovascular disorders. Br J Pharmacol 166:1981–1992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  130. Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ (1999) Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci U S A 96:266–271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  131. Ishimoto K, Tachibana K, Sumitomo M, Omote S, Hanano I, Yamasaki D, Watanabe Y, Tanaka T, Hamakubo T, Sakai J, Kodama T, Doi T (2006) Identification of human low-density lipoprotein receptor as a novel target gene regulated by liver X receptor alpha. FEBS Lett 580:4929–4933

    Article  CAS  PubMed  Google Scholar 

  132. Malerod L, Juvet LK, Hanssen-Bauer A, Eskild W, Berg T (2002) Oxysterol-activated LXRalpha/RXR induces hSR-BI-promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 299:916–923

    Article  CAS  PubMed  Google Scholar 

  133. Obinata H, Hattori T, Nakane S, Tatei K, Izumi T (2005) Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J Biol Chem 280:40676–40683

    Article  CAS  PubMed  Google Scholar 

  134. Hattori T, Obinata H, Ogawa A, Kishi M, Tatei K, Ishikawa O, Izumi T (2008) G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 128:1123–1133

    Article  CAS  PubMed  Google Scholar 

  135. Marathe GK, Prescott SM, Zimmerman GA, Mcintyre TM (2001) Oxidized LDL contains inflammatory PAF-like phospholipids. Trends Cardiovasc Med 11:139–142

    Article  CAS  PubMed  Google Scholar 

  136. Marathe GK, Davies SS, Harrison KA, Silva AR, Murphy RC, Castro-Faria-Neto H, Prescott SM, Zimmerman GA, Mcintyre TM (1999) Inflammatory platelet-activating factor-like phospholipids in oxidized low density lipoproteins are fragmented alkyl phosphatidylcholines. J Biol Chem 274:28395–28404

    Article  CAS  PubMed  Google Scholar 

  137. Subbanagounder G, Leitinger N, Shih PT, Faull KF, Berliner JA (1999) Evidence that phospholipid oxidation products and/or platelet-activating factor play an important role in early atherogenesis: in vitro and In vivo inhibition by WEB 2086. Circ Res 85:311–318

    Article  CAS  PubMed  Google Scholar 

  138. Marathe GK, Zimmerman GA, Prescott SM, Mcintyre TM (2002) Activation of vascular cells by PAF-like lipids in oxidized LDL. Vascul Pharmacol 38:193–200

    Article  CAS  PubMed  Google Scholar 

  139. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Gugiu B, Fox PL, Hoff HF, Salomon RG, Hazen SL (2002) Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 277:38503–38516

    Article  CAS  PubMed  Google Scholar 

  140. Podrez EA, Poliakov E, Shen Z, Zhang R, Deng Y, Sun M, Finton PJ, Shan L, Febbraio M, Hajjar DP, Silverstein RL, Hoff HF, Salomon RG, Hazen SL (2002) A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions. J Biol Chem 277:38517–38523

    Article  CAS  PubMed  Google Scholar 

  141. Podrez EA, Hoppe G, O’Neil J, Hoff HF (2003) Phospholipids in oxidized LDL not adducted to apoB are recognized by the CD36 scavenger receptor. Free Radic Biol Med 34:356–364

    Article  CAS  PubMed  Google Scholar 

  142. Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203:2613–2625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. Walton KA, Hsieh X, Gharavi N, Wang S, Wang G, Yeh M, Cole AL, Berliner JA (2003) Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J Biol Chem 278:29661–29666

    Article  CAS  PubMed  Google Scholar 

  144. Erridge C, Webb DJ, Spickett CM (2007) Toll-like receptor 4 signalling is neither sufficient nor required for oxidised phospholipid mediated induction of interleukin-8 expression. Atherosclerosis 193:77–85

    Article  CAS  PubMed  Google Scholar 

  145. Kadl A, Sharma PR, Chen W, Agrawal R, Meher AK, Rudraiah S, Grubbs N, Sharma R, Leitinger N (2011) Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2. Free Radic Biol Med 51:1903–1909

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  146. Miller YI, Choi SH, Wiesner P, Bae YS (2012) The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 167:990–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Miller YI, Choi SH, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, Boullier A, Gonen A, Diehl CJ, Que X, Montano E, Shaw PX, Tsimikas S, Binder CJ, Witztum JL (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108:235–248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Reddy S, Hama S, Grijalva V, Hassan K, Mottahedeh R, Hough G, Wadleigh DJ, Navab M, Fogelman AM (2001) Mitogen-activated protein kinase phosphatase 1 activity is necessary for oxidized phospholipids to induce monocyte chemotactic activity in human aortic endothelial cells. J Biol Chem 276:17030–17035

    Article  CAS  PubMed  Google Scholar 

  149. Ursini F, Bindoli A (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids 44:255–276

    Article  CAS  PubMed  Google Scholar 

  150. Brigelius-Flohe R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  CAS  PubMed  Google Scholar 

  151. Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 265:454–461

    Google Scholar 

  152. Kernstock RM, Girotti AW (2008) New strategies for the isolation and activity determination of naturally occurring type-4 glutathione peroxidase. Protein Expr Purif 62:216–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Bjornstedt M, Hamberg M, Kumar S, Xue J, Holmgren A (1995) Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J Biol Chem 270:11761–11764

    Article  CAS  PubMed  Google Scholar 

  154. Rock C, Moos PJ (2010) Selenoprotein P protects cells from lipid hydroperoxides generated by 15-LOX-1. Prostaglandins Leukot Essent Fatty Acids 83:203–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Saito Y, Hayashi T, Tanaka A, Watanabe Y, Suzuki M, Saito E, Takahashi K (1999) Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J Biol Chem 274:2866–2871

    Article  CAS  PubMed  Google Scholar 

  156. Vladykovskaya E, Ozhegov E, Hoetker JD, Xie Z, Ahmed Y, Suttles J, Srivastava S, Bhatnagar A, Barski OA (2011) Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. J Lipid Res 52:2209–2225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Alary J, Gueraud F, Cravedi JP (2003) Fate of 4-hydroxynonenal in vivo: disposition and metabolic pathways. Mol Aspects Med 24:177–187

    Article  CAS  PubMed  Google Scholar 

  158. Carlquist JF, Muhlestein JB, Anderson JL (2007) Lipoprotein-associated phospholipase A2: a new biomarker for cardiovascular risk assessment and potential therapeutic target. Expert Rev Mol Diagn 7:511–517

    Article  CAS  PubMed  Google Scholar 

  159. Ahmed Z, Ravandi A, Maguire GF, Emili A, Draganov D, La Du BN, Kuksis A, Connelly PW (2002) Multiple substrates for paraoxonase-1 during oxidation of phosphatidylcholine by peroxynitrite. Biochem Biophys Res Commun 290:391–396

    Article  CAS  PubMed  Google Scholar 

  160. Ferretti G, Bacchetti T (2012) Effect of dietary lipids on paraoxonase-1 activity and gene expression. Nutr Metab Cardiovasc Dis 22:88–94

    Article  CAS  PubMed  Google Scholar 

  161. Furlong CE, Suzuki SM, Stevens RC, Marsillach J, Richter RJ, Jarvik GP, Checkoway H, Samii A, Costa LG, Griffith A, Roberts JW, Yearout D, Zabetian CP (2010) Human PON1, a biomarker of risk of disease and exposure. Chem Biol Interact 187:355–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Liu J, Chen R, Marathe GK, Febbraio M, Zou W, Mcintyre TM (2011) Circulating platelet-activating factor is primarily cleared by transport, not intravascular hydrolysis by lipoprotein-associated phospholipase A2/PAF acetylhydrolase. Circ Res 108:469–477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Chen R, Brady E, Mcintyre TM (2011) Human TMEM30a promotes uptake of antitumor and bioactive choline phospholipids into mammalian cells. J Immunol 186:3215–3225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Carr AC, Vissers MC, Domigan NM, Winterbourn CC (1997) Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins. Redox Rep 3:263–271

    CAS  PubMed  Google Scholar 

  165. Robaszkiewicz A, Greig FH, Pitt AR, Spickett CM, Bartosz G, Soszynski M (2010) Effect of phosphatidylcholine chlorohydrins on human erythrocytes. Chem Phys Lipids 163:639–647

    Article  CAS  PubMed  Google Scholar 

  166. Dever GJ, Benson R, Wainwright CL, Kennedy S, Spickett CM (2008) Phospholipid chlorohydrin induces leukocyte adhesion to ApoE-/- mouse arteries via upregulation of P-selectin. Free Radic Biol Med 44:452–463

    Article  CAS  PubMed  Google Scholar 

  167. Franco-Pons N, Casas J, Fabrias G, Gea-Sorli S, De-Madaria E, Gelpi E, Closa D (2013) Fat necrosis generates proinflammatory halogenated lipids during acute pancreatitis. Ann Surg 257:943–951

    Article  PubMed  Google Scholar 

  168. Thukkani AK, Martinson BD, Albert CJ, Vogler GA, Ford DA (2005) Neutrophil-mediated accumulation of 2-ClHDA during myocardial infarction: 2-ClHDA-mediated myocardial injury. Am J Physiol Heart Circ Physiol 288:H2955–H2964

    Article  CAS  PubMed  Google Scholar 

  169. Wildsmith KR, Albert CJ, Hsu FF, Kao JL, Ford DA (2006) Myeloperoxidase-derived 2-chlorohexadecanal forms Schiff bases with primary amines of ethanolamine glycerophospholipids and lysine. Chem Phys Lipids 139:157–170

    Article  CAS  PubMed  Google Scholar 

  170. Messner MC, Albert CJ, Ford DA (2008) 2-chlorohexadecanal and 2-chlorohexadecanoic acid induce COX-2 expression in human coronary artery endothelial cells. Lipids 43:581–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, Mcloughlin RM, Giddings JC, Lewis MJ, Haslam RJ, Freeman BA, O’donnell VB (2002) Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem 277:5832–5840

    Article  CAS  PubMed  Google Scholar 

  172. Coles B, Bloodsworth A, Clark SR, Lewis MJ, Cross AR, Freeman BA, O’donnell VB (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res 91:375–381

    Article  CAS  PubMed  Google Scholar 

  173. Moore K, Roberts LJ 2nd (1998) Measurement of lipid peroxidation. Free Radic Res 28:659–671

    Article  CAS  PubMed  Google Scholar 

  174. Gobel C, Feussner I (2009) Methods for the analysis of oxylipins in plants. Phytochemistry 70:1485–1503

    Article  PubMed  CAS  Google Scholar 

  175. Holley A, Cheeseman K (1993) Measuring free radical reactions in vivo. Br Med Bull 49:494–505

    CAS  PubMed  Google Scholar 

  176. Jiang Z-Y, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    Article  CAS  PubMed  Google Scholar 

  177. Bou R, Codony R, Tres A, Decker EA, Guardiola F (2008) Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: a review of the factors that influence the method’s performance. Anal Biochem 377:1–15

    Article  CAS  PubMed  Google Scholar 

  178. Miyazawa T, Fujimoto K, Suzuki T, Yasuda K (1994) Determination of phospholipid hydroperoxides using luminol chemiluminescence–high-performance liquid chromatography. Methods Enzymol 233:324–332

    Article  CAS  PubMed  Google Scholar 

  179. Yamamoto Y (1994) Chemiluminescence-based high-performance liquid chromatography assay of lipid hydroperoxides. Methods Enzymol 233:319–324

    Article  CAS  PubMed  Google Scholar 

  180. Di Francesco F, Fuoco R, Trivella MG, Ceccarini A (2005) Breath analysis: trends in techniques and clinical applications. Microchem J 79:405–410

    Article  CAS  Google Scholar 

  181. Miekisch W, Schubert JK, Noeldge-Schomburg GFE (2004) Diagnostic potential of breath analysis – focus on volatile organic compounds. Clin Chim Acta 347:25–39

    Article  CAS  PubMed  Google Scholar 

  182. Shibamoto T (2006) Analytical methods for trace levels of reactive carbonyl compounds formed in lipid peroxidation systems. J Pharm Biomed Anal 41:12–25

    Article  CAS  PubMed  Google Scholar 

  183. Wong SH, Knight JA, Hopfer SM, Zaharia O, Leach CN Jr, Sunderman FW Jr (1987) Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin Chem 33:214–220

    CAS  PubMed  Google Scholar 

  184. Yagi K (1984) Assay for blood plasma or serum. Methods Enzymol 105:328–331

    Article  CAS  PubMed  Google Scholar 

  185. Breusing N, Grune T, Andrisic L, Atalay M, Bartosz G, Biasi F, Borovic S, Bravo L, Casals I, Casillas R, Dinischiotu A, Drzewinska J, Faber H, Fauzi NM, Gajewska A, Gambini J, Gradinaru D, Kokkola T, Lojek A, Luczaj W, Margina D, Mascia C, Mateos R, Meinitzer A, Mitjavila MT, Mrakovcic L, Munteanu MC, Podborska M, Poli G, Sicinska P, Skrzydlewska E, Vina J, Wiswedel I, Zarkovic N, Zelzer S, Spickett CM (2010) An inter-laboratory validation of methods of lipid peroxidation measurement in UVA-treated human plasma samples. Free Radic Res 44:1203–1215

    Article  CAS  PubMed  Google Scholar 

  186. Manini P, Andreoli R, Sforza S, Dall’Asta C, Galaverna G, Mutti A, Niessen WM (2010) Evaluation of Alternate Isotope-Coded Derivatization Assay (AIDA) in the LC-MS/MS analysis of aldehydes in exhaled breath condensate. J Chromatogr B Analyt Technol Biomed Life Sci 878:2616–2622

    Article  CAS  PubMed  Google Scholar 

  187. Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97

    Article  CAS  PubMed  Google Scholar 

  188. Pratico D, Iuliano L, Mauriello A, Spagnoli L, Lawson JA, Rokach J, Maclouf J, Violi F, Fitzgerald GA (1997) Localization of distinct F2-isoprostanes in human atherosclerotic lesions. J Clin Invest 100:2028–2034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Mori T, Croft K, Puddey I, Beilin L (1999) An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal Biochem 268:117–125

    Article  CAS  PubMed  Google Scholar 

  190. Lee CY, Huang SH, Jenner AM, Halliwell B (2008) Measurement of F2-isoprostanes, hydroxyeicosatetraenoic products, and oxysterols from a single plasma sample. Free Radic Biol Med 44:1314–1322

    Article  CAS  PubMed  Google Scholar 

  191. Wiswedel I, Hirsch D, Nourooz-Zadeh J, Flechsig A, Luck-Lambrecht A, Augustin W (2002) Analysis of monohydroxyeicosatetraenoic acids and F2-isoprostanes as markers of lipid peroxidation in rat brain mitochondria. Free Radic Res 36:1–11

    Article  CAS  PubMed  Google Scholar 

  192. Menendez-Carreno M, Garcia-Herreros C, Astiasaran I, Ansorena D (2008) Validation of a gas chromatography-mass spectrometry method for the analysis of sterol oxidation products in serum. J Chromatogr B Analyt Technol Biomed Life Sci 864:61–68

    Article  CAS  PubMed  Google Scholar 

  193. Warnke MM, Wanigasekara E, Singhal SS, Singhal J, Awasthi S, Armstrong DW (2008) The determination of glutathione-4-hydroxynonenal (GSHNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Anal Bioanal Chem 392:1325–1333

    Article  CAS  PubMed  Google Scholar 

  194. Thukkani AK, Mchowat J, Hsu FF, Brennan ML, Hazen SL, Ford DA (2003) Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108:3128–3133

    Article  CAS  PubMed  Google Scholar 

  195. Tsikas D, Zoerner AA, Jordan J (2011) Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim Biophys Acta 1811:694–705

    Article  CAS  PubMed  Google Scholar 

  196. Reis A, Spickett CM (1818) Chemistry of phospholipid oxidation. Biochim Biophys Acta 2374–87

    Google Scholar 

  197. Spickett CM, Fauzi NM (2011) Analysis of oxidized and chlorinated lipids by mass spectrometry and relevance to signalling. Biochem Soc Trans 39:1233–1239

    Article  CAS  PubMed  Google Scholar 

  198. Spickett CM, Reis A, Pitt AR (2011) Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC-MS using a QQLIT instrument. Free Radic Biol Med 51:2133–2149

    Article  CAS  PubMed  Google Scholar 

  199. Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN (2012) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res 53:1232–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Morgan AH, Hammond VJ, Morgan L, Thomas CP, Tallman KA, Garcia-Diaz YR, Mcguigan C, Serpi M, Porter NA, Murphy RC, O’Donnell VB (2010) Quantitative assays for esterified oxylipins generated by immune cells. Nat Protoc 5:1919–1931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. Bevan RJ, Durand MF, Hickenbotham PT, Kitas GD, Patel PR, Podmore ID, Griffiths HR, Waller HL, Lunec J (2003) Validation of a novel ELISA for measurement of MDA-LDL in human plasma. Free Radic Biol Med 35:517–527

    Article  CAS  PubMed  Google Scholar 

  202. Rauniyar N, Prokai L (2009) Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications. Proteomics 9:5188–5193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  203. van Lenten BJ, Navab M, Anantharamaiah GM, Buga GM, Reddy ST, Fogelman AM (2008) Multiple indications for anti-inflammatory apolipoprotein mimetic peptides. Curr Opin Investig Drugs 9:1157–1162

    PubMed Central  PubMed  Google Scholar 

  204. van Lenten BJ, Wagner AC, Jung CL, Ruchala P, Waring AJ, Lehrer RI, Watson AD, Hama S, Navab M, Anantharamaiah GM, Fogelman AM (2008) Anti-inflammatory apoA-I-mimetic peptides bind oxidized lipids with much higher affinity than human apoA-I. J Lipid Res 49:2302–2311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  205. Ruchala P, Navab M, Jung CL, Hama-Levy S, Micewicz ED, Luong H, Reyles JE, Sharma S, Waring AJ, Fogelman AM, Lehrer RI (2010) Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS One 5, e10181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  206. Hipkiss AR (2009) Carnosine and its possible roles in nutrition and health. Adv Food Nutr Res 57:87–154

    Article  CAS  PubMed  Google Scholar 

  207. Guiotto A, Calderan A, Ruzza P, Osler A, Rubini C, Jo DG, Mattson MP, Borin G (2005) Synthesis and evaluation of neuroprotective alpha,beta-unsaturated aldehyde scavenger histidyl-containing analogues of carnosine. J Med Chem 48:6156–6161

    Article  CAS  PubMed  Google Scholar 

  208. Aldini G, Vistoli G, Regazzoni L, Benfatto MC, Bettinelli I, Carini M (2010) Edaravone inhibits protein carbonylation by a direct carbonyl-scavenging mechanism: focus on reactivity, selectivity, and reaction mechanisms. Antioxid Redox Signal 12:381–392

    Article  CAS  PubMed  Google Scholar 

  209. Davies SS, Bodine C, Matafonova E, Pantazides BG, Bernoud-Hubac N, Harrison FE, Olson SJ, Montine TJ, Amarnath V, Roberts LJ 2nd (2011) Treatment with a gamma-ketoaldehyde scavenger prevents working memory deficits in hApoE4 mice. J Alzheimers Dis 27:49–59

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Das UN (2003) Current advances in sepsis and septic shock with particular emphasis on the role of insulin. Med Sci Monit 9:RA181–RA192

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne M. Spickett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mohd Fauzi, N., Spickett, C.M. (2015). Lipid Oxidation. In: Roberts, S., Kehrer, J., Klotz, LO. (eds) Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-19096-9_4

Download citation

Publish with us

Policies and ethics