Skip to main content

Abstract

Pollution is not a recent phenomenon. Air pollution has been a problem since the appearance of our earliest ancestors. But over the past few centuries, the rising human activities associated with population growth and industrialization have negatively contributed to the air quality.

Atmospheric air can be considered as an aero-disperse system, containing primarily nitrogen, oxygen, other minor gases together with water vapour. In addition to these components, more than 3,000 substances, known as air pollutants and able to change the base composition of the atmosphere, are also present. Usually pollutants are classified in several ways according to their origin, phase, formation mechanism and their effect on human health.

This chapter will examine the six major air pollutants designated by the U.S. Environmental Protection Agency (EPA) as “criteria pollutants”. They include particulate matter, carbon monoxide, sulfur oxides, nitrogen oxides, lead and trophospheric ozone. It will be also described the contribution to the air pollution of halogens, halogenated hydrocarbons and the singular case of cigarette smoke, now considered part of the air pollutants.

Since most air pollutants act directly as prooxidants of lipids and proteins or as free radical generators, their common cellular mechanism of injury involves the promotion of oxidative stress and induction of inflammatory responses.

Despite the advances that were reached, many questions remain. Humans are exposed to several pollutants simultaneously, but as consequence of different factors, such as genetic predisposition, age, nutritional status and time of exposure, not everybody that is exposed to toxicants develops diseases or the same diseases. Therefore, all these variables make the understanding of pollution effects in human health very difficult. Nevertheless, in view of the enormous burden estimated from exposure to air pollution, it would be of utmost importance to conduct researches in this field for the development of different and specific strategies to counteract the negative health and social impacts. Furthermore, sensitizing the institutions to air pollution control policy is of strategic importance for air quality in worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sapart CJ, Monteil G, Prokopiou M, Sperlich P, Krumhardt KM, van der Veen C, Houweling S, Krol MC, Blunier T, Sowers T, Martinerie P, Witrant E, Dahl-Jensen D, Rockmann T (2012) Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490(7418):85–88. doi:10.1038/nature11461

    Article  CAS  PubMed  Google Scholar 

  2. Heal MR, Kumar P, Harrison RM (2012) Particles, air quality, policy and health. Chem Soc Rev 41(19):6606–6630. doi:10.1039/c2cs35076a

    Article  CAS  PubMed  Google Scholar 

  3. Bruno F, Cocchi DA (2002) A unified strategy for building simple air quality indices. Environ Sci Technol 13(3):243–261

    CAS  Google Scholar 

  4. Eötvös T (2007) Description of the effects of chemical and biological air pollutants by means of air quality indices. Acta climatologica et chorologica universitatis szegediensis, tomus 40–41:179–185

    Google Scholar 

  5. Mauderly JL, Chow JC (2008) Health effects of organic aerosols. Inhal Toxicol 20(3):257–288

    Article  CAS  PubMed  Google Scholar 

  6. Stephanou EG (2012) 1.10 – Aerosols PM10 and PM2.5 In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (ed) Comprehensive sampling and sample preparation, analytical techniques for scientists sampling theory and methodology, vol 1. Elsevier, p 191–199

    Google Scholar 

  7. Sienfeld JH, Pandis SN (1997) Atmospheric chemistry and physics. In: Air pollution to climate change Wiley, New York, p 97–106

    Google Scholar 

  8. Brunekreef B, Dockery DW, Krzyzanowski M (1995) Epidemiologic studies on short-term effects of low levels of major ambient air pollution components. Environ Health Perspect 103(2):3–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dockery DW, Pope CA (1994) Acute respiratory effects of particulate air pollution. Annu Rev Public Health 15:107–132, 3rd

    Article  CAS  PubMed  Google Scholar 

  10. Gauderman WJ, Avol E, Gilliland F et al (2004) The effect of air pollution on lung development from 10 to 18 years of age. N Engl J Med 351(11):1057–1067

    Article  CAS  PubMed  Google Scholar 

  11. Gauderman WJ, Gilliland GF, Vora H et al (2002) Association between air pollution and lung function growth in southern California children: results from a second cohort. Am J Respir Crit Care Med 166(1):76–84

    Article  PubMed  Google Scholar 

  12. Künzli N, Schins RPF, Donaldson K (2007) Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 64(2):73–74

    PubMed Central  PubMed  Google Scholar 

  13. Borm PJA, Kelly F, Hidy GM et al (2007) Oxidant generation by particulate matter: from biologically effective dose to a promising, novel metric. Occup Environ Med 64(2):73–74

    Article  PubMed Central  PubMed  Google Scholar 

  14. Massoud R, Shihadeh AL, Roumié RM, Youness M et al (2011) Intraurban variability of PM10 and PM2.5 in an Eastern Mediterranean city. Atmos Res 101(4):893–901

    Article  CAS  Google Scholar 

  15. Finlayson-Pitts B, Pitts J (2000) The atmospheric system. Chemistry of the Upper and Lower Atmosphere. Theory, Experiments, and Applications, In, pp 15–39

    Google Scholar 

  16. Kassomenosa P, Vardoulakisb S, Chaloulakouc A et al (2012) Levels, sources and seasonality of coarse particles (PM10–PM2.5) in three European capitals – Implications for particulate pollution control. Atmos Environ 54:337–347

    Article  Google Scholar 

  17. Schwartz J, Neas LM (2000) Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 11(1):6–10

    Article  CAS  PubMed  Google Scholar 

  18. Raaschou-Nielsen O, Andersen ZJ, Beelen R et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14(9):813–822

    Article  PubMed  Google Scholar 

  19. Robert U, Edward H (2009) Crossing the Energy Divide: Moving from Fossil Fuel Dependence to a Clean-Energy Future. Wharton School Publishing, NJ, p 36

    Google Scholar 

  20. Guzman JA (2012) Carbon monoxide poisoning. Crit Care Clin Oct, 28(4):537–548).

    Google Scholar 

  21. Li L, Hsu A, Moore PK (2009) Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation–a tale of three gases! Pharmacol Ther 123(3):386–400

    Article  CAS  PubMed  Google Scholar 

  22. Lippi G, Rastelli G, Meschi T et al (2012) Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem 45(16–17):1278–1285

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, LH (2002) “Carbon Monoxide”. Goldfrank’s toxicologic emergencies, 7th ed. McGraw-Hill, New York, p 1689–1704

    Google Scholar 

  24. (1998) Toxicological profile for sulfur dioxide U.S. Department of Health and Human Services Public Health Service. Agency for toxic substances and disease registry

    Google Scholar 

  25. Jacobson MZ (2002) Atmospheric pollution: history, science, and regulation. Cambridge University Press, Cambridge, pp 2–26

    Book  Google Scholar 

  26. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Report on a WHO Working Group Bonn, Germany, 13–15 Jan 2003, p 1–95

    Google Scholar 

  27. Kelly FJ, Fussell JC (2011) Air pollution and airway disease. Clin Exp Allergy 41(8):1059–1071

    Article  CAS  PubMed  Google Scholar 

  28. Jerrett M, Burnett RT, Beckerman BS et al (2013) Spatial analysis of air pollution and mortality in California. Am J Respir Crit Care Med 188(5):593–599

    Article  PubMed  Google Scholar 

  29. Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:e362–e367

    Article  Google Scholar 

  30. Ray SA, Ray MK (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2(2):57–63

    CAS  Google Scholar 

  31. Duruibe J, Ogwuegbu M, Egwurugwu J (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  32. Canfield RL, Henderson CR Jr, Cory-Slechta DA et al (2003) Intellectual impairment in children with blood lead concentrations below 10 μg per deciliter. New Engl J Med 348(16):1517–1526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rabinowitz M, Bellinger D, Leviton A et al (1987) Pregnancy hypertension, blood pressure during labor, and blood lead levels. Hypertension 10(4):447–451

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann PH (1999) Tracing the sources of tropospheric ozone. In: Druck B, Basel AG (eds) Proceedings of the Int. Ozone Symposium. Basel, Switzerland (IOA – EA3G Ed.), p 157–160.

    Google Scholar 

  35. Dentener F, Stevenson D, Ellingsen K (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40(11):3586–3594

    Article  CAS  PubMed  Google Scholar 

  36. Pryor WA, Squadrito GL, Friedman M (1995) The cascade mechanism to ex- plain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med 19:935–941

    Article  CAS  PubMed  Google Scholar 

  37. Mudway IS, Kelly FJ (2000) Ozone and the lung: a sensitive issue. Mol Aspects Med 21:1–48

    Article  CAS  PubMed  Google Scholar 

  38. Jerrett M, Finkelstein MM, Brook JR (2004) A cohort study of air pollution and mortality in Los Angeles. Epidemiology 15:S46

    Article  Google Scholar 

  39. Thiele JJ, Traber MG, Polefka TG et al (1997) Ozone-exposure depletes vitamin E and induces lipid peroxidation in murine stratum corneum. Invest Dermatol 108(5):753–757

    Article  CAS  Google Scholar 

  40. Thiele JJ, Traber MG, Tsang K et al (1997) In vivo exposure to ozone depletes vitamins C and E and induces lipid peroxidation in epidermal layers of murine skin. Free Radic Biol Med 23(3):385–391

    Article  CAS  PubMed  Google Scholar 

  41. Valacchi G, Pagnin E, Corbacho AM et al (2004) In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med 36:673–681

    Article  CAS  PubMed  Google Scholar 

  42. Xu F, Yan S, Wu M et al (2011) Ambient ozone pollution as a risk factor for skin disorders. Br J Dermatol 165:224–225

    Article  CAS  PubMed  Google Scholar 

  43. Afaq F, Zaid MA, Pelle E et al (2009) Aryl hydrocarbon receptor is an ozone sensor in human skin. J Invest Dermatol 129:2396–2403

    Article  CAS  PubMed  Google Scholar 

  44. Schmut O, Gruber E, el-Shabrawi Y et al (1994) Destruction of human tear proteins by ozone. Free Radic Biol Med 17(2):165–169

    Article  CAS  PubMed  Google Scholar 

  45. Lee H, Kim EK, Kang SW et al (2013) Effects of ozone exposure on the ocular surface. Free Radic Biol Med 63:78–89

    Article  CAS  PubMed  Google Scholar 

  46. Stein L (1971) Environmental sources and forms of fluoride. Biologic Effects of Atmospheric Pollutants - Fluorides, National Academy of Sciences-National Research Council, Washington, D.C., N.A.S., pp 5–28

    Google Scholar 

  47. Pfafflin JR, Ziegler EN (2010) Encyclopedia of environmental science and engineering. Science 1:70

    Google Scholar 

  48. Sinha SN, Nag PK (2011) Air pollution from solid fuels. National Institute of Nutrition/Elsevier B.V, Ahmedabad, India

    Google Scholar 

  49. Invernizzi G, Ruprecht A, Mazza R et al (2004) Transfer of particulate matter pollution from smoking to non-smoking coaches: the explanation for the smoking ban on Italian trains. Tob Control 13(3):319–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Talhout R (2011) Hazardous compounds in tobacco smoke. Int J Environ Res Public Health 8(2):613–628

    Article  PubMed Central  PubMed  Google Scholar 

  51. Dube MFR, Green CR (1982) Methods of collection of smoke for analytical purpose. Rev Adv Top Sci 8:42–102

    Google Scholar 

  52. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Cueto R, Pryor WA (1994) Cigarette smoke chemistry: conversion of nitric oxide to nitrogen dioxide and reactions of nitrogen oxides with other smoke components as studied by fourier transform infrared spectroscopy. Vib Spectrosc 7:97–111

    Article  CAS  Google Scholar 

  54. Pryor WA, Hales BJ, Premovic PI et al (1983) The radicals in cigarette tar: their nature and suggested physiological implications. Science 220(4595):425–427

    Article  CAS  PubMed  Google Scholar 

  55. Zang LY, Stone K, Pryor WA (1995) Detection of free radicals in aqueous extracts of cigarette tar by electron spin resonance. Free Radic Biol Med 19(2):161–167

    Article  CAS  PubMed  Google Scholar 

  56. Dietrich M, Block G, Benowitz NL et al (2003) Vitamin C supplementation decreases oxidative stress biomarker f2-isoprostanes in plasma of nonsmokers exposed to environmental tobacco smoke. Nutr Cancer 45(2):176–184

    Article  CAS  PubMed  Google Scholar 

  57. Uchida K, Shiraishi M, Naito Y et al (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2- nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274(4):2234–2242

    Article  CAS  PubMed  Google Scholar 

  58. Schick S, Glantz S (2005) Phillip Morris toxicological experiments with fresh sidestream smoke: more toxic than mainstream smoke. Tob Control 14:396–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Sonnenfeld G, Wilson DM (1987) The effective smoke agent dilution on the cytotoxicity of sidestream (passive) smoke. Toxicol Lett 35:89–94

    Article  CAS  PubMed  Google Scholar 

  60. Haussmann HJ, Anskeit E, Becker D et al (1998) Comparison of fresh and room- aged cigarette sidestream smoke in a subchronic inhalation study on rats. Toxicol Sci 41:100–116

    Article  CAS  PubMed  Google Scholar 

  61. Riediker M, Devlin RB, Griggs TR et al (2004) Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions. Part Fibre Toxicol 1(1):2

    Article  PubMed Central  PubMed  Google Scholar 

  62. Wegmann M, Fehrenbach A, Heimann S et al (2005) NO2-induced airway inflammation is associated with progressive airflow limitation and development of emphysema-like lesions in C57bl/6 mice. Exp Toxicol Pathol 56:341

    Article  CAS  PubMed  Google Scholar 

  63. Kagawa J (1985) Evaluation of biological significance of nitrogen oxides exposure. Tokai J Exp Clin Med 10:348

    CAS  PubMed  Google Scholar 

  64. Balmes JR, Fine JM, Sheppard D (1987) Symptomatic bronchoconstriction after short-term inhalation of sulfur dioxide. Am Rev Respir Dis 136:1117

    Article  CAS  PubMed  Google Scholar 

  65. Ghio AJ, Huang YC (2004) Exposure to concentrated ambient particles (CAPs): a review. Inhal Toxicol 16:53

    Article  CAS  PubMed  Google Scholar 

  66. Uysal N, Schapira RM (2003) Effects of ozone on lung function and lung diseases. Curr Opin Pulm Med 9:144

    Article  CAS  PubMed  Google Scholar 

  67. Rastogi SK, Gupta BN, Husain T et al (1991) A cross-sectional study of pulmonary function among workers exposed to multimetals in the glass bangle industry. Am J Ind Med 20:391

    Article  CAS  PubMed  Google Scholar 

  68. Tager IB, Balmes J, Lurmann F et al (2005) Chronic exposure to ambient ozone and lung function in young adults. Epidemiology 16:751

    Article  PubMed  Google Scholar 

  69. Kuo CY, Wong RH, Lin JY et al (2006) Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J Toxicol Environ Health A 69:1337

    Article  CAS  PubMed  Google Scholar 

  70. Nawrot T, Plusquin M, Hogervorst J et al (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119

    Article  CAS  PubMed  Google Scholar 

  71. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Lasley SM, Gilbert ME (2000) Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology 21(6):1057–1068

    CAS  PubMed  Google Scholar 

  73. Lasley SM, Green MC, Gilbert ME (2001) Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level. Neurotoxicol Teratol 23(2):185–189

    Article  CAS  PubMed  Google Scholar 

  74. Huang YC, Ghio AJ (2006) Vascular effects of ambient pollutant particles and metals. Curr Vasc Pharmacol 4:199

    Article  CAS  PubMed  Google Scholar 

  75. Lanphear BP, Hornung R, Khoury J et al (2005) Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 113(7):894–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12(3):RA57–RA65

    PubMed  Google Scholar 

  77. Menzel DB (1994) The toxicity of air pollution in experimental animals and humans: the role of oxidative stress. Toxicol Lett 72:269

    Article  CAS  PubMed  Google Scholar 

  78. Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534

    Article  CAS  PubMed  Google Scholar 

  79. Valko M, Leibfritz D, Moncol J et al (2006) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44

    Article  PubMed  Google Scholar 

  80. Chavez E, Jay D, Bravo C (1987) The mechanism of lead-induced mitochondrial Ca2þ efflux. J Bioenerg Biomembr 19:285

    Article  CAS  PubMed  Google Scholar 

  81. Costa M, Yan Y, Zhao D et al (2003) Molecular mechanisms of nickel carcinogenesis: gene silencing by nickel delivery to the nucleus and gene activation/inactivation by nickel-induced cell signaling. J Environ Monit 5:222

    Article  CAS  PubMed  Google Scholar 

  82. Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12:RA57

    PubMed  Google Scholar 

  83. Toscano CD, Guilarte TR (2005) Lead neurotoxicity: from exposure to molecular effects. Brain Res Brain Res Rev 49:529

    Article  CAS  PubMed  Google Scholar 

  84. Goldberg MS, Burnett RT, Stieb DM, Brophy JM, Daskalopoulou SS, Valois MF, Brook JR (2013) Associations between ambient air pollution and daily mortality among elderly persons in Montreal Quebec. Sci Total Environ 463:931

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Valacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aiello, F., Grande, F., Sticozzi, C., Valacchi, G. (2015). Outdoor Air Pollutants. In: Roberts, S., Kehrer, J., Klotz, LO. (eds) Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-19096-9_15

Download citation

Publish with us

Policies and ethics