Skip to main content

A Historical Perspective on Oxidative Stress and Intracellular Redox Control

  • Chapter
Book cover Studies on Experimental Toxicology and Pharmacology

Abstract

Research into topics surrounding “oxidative stress” and redox biology has a long tradition which can be traced back to the beginning of modern biochemistry at the turn of the Twentieth Century. As part of this chapter, we will follow the different strands of investigation which have come together in the 1960s and 1970s to carve out the distinct field of redox biology we know today. Whilst there is not one inventor or starting date of oxidative stress research, it is safe to consider the late 1970s and early 1980s as the time when the pre-paradigm phase of this research was transformed into a more distinct field of biochemistry with its very own concepts, methods and, above all, language. At this point, the paradigm of “oxidative stress” enters the scene, which has subsequently initiated and / or stimulated numerous individual threads of investigation. Despite its significant contribution to redox biology, this paradigm has been faced by a range of so-called ‘anomalies’ during the following decades and hence has been refined by various (auxiliary) hypotheses, and evolved into a modern concept of cellular redox regulation, which also embraces widespread oxidative cell signalling and adaptive processes. This evolutionary process has found its manifestation in the development of many new concepts, such as the one of the “Reactive Sulfur Species” (RSS) and the “cellular thiolstat”. Furthermore, it has exerted a major influence on the notion of “antioxidants”, which in parallel has developed from a basic idea of fighting oxidants with antioxidants to a more differentiated concept of redox modulation in the ill and elderly, as part of functional food, as a quality label for “healthy food” and, last but not least, as an access to new shores, such as nutri-(epi)genetics. In the end, the theme of oxidative stress and redox biology is a wide and open field with a long and fruitful past and a promising, bright future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Curiously, whilst Ernest Beutler never won the Nobel Prize for his groundbreaking work in the field of haematology, his son, Bruce Alan Beutler (b. 1957) shared the 2011 Nobel Prize in Physiology or Medicine for “discoveries concerning the activation of innate immunity”.

  2. 2.

    Furchgott, Murad and Ignarro, but not Moncada, subsequently shared the 1998 Nobel Prize in Physiology or Medicine for this discovery.

  3. 3.

    Unfortunately, the role of language and terminology in science is often belittled, but their power should not be underestimated. The concept of phlogiston was dead once Lavoisier introduced his own language referring to oxidation and entirely removing the “P-word” from his vocabulary and journals, almost like Stalin had the image of Trotzky removed from official photographs. Or as some philosophers would say: “If you have no word for it, it does not exist.” While expressions such as “oxidative stress” and “free radicals” ultimately ushered in a new era of research, other entities, such as the “caged radical” also appeared on the scene for a while to stimulate research but subsequently escaped from their cages into the mist of time.

References

  1. Xu D, Rovira II, Finkel T (2002) Oxidants painting the Cysteine Chapel: redox regulation of PTPs. Dev Cell 2:251–259

    Article  CAS  PubMed  Google Scholar 

  2. Savitsky PA, Finkel T (2002) Redox regulation of Cdc25C. J Biol Chem 277(23):20535–20540

    Article  CAS  PubMed  Google Scholar 

  3. Herrmann JM, Dick TP (2012) Redox biology on the rise. Biol Chem 393(9):999–1004

    Article  CAS  PubMed  Google Scholar 

  4. Ore S (1956) Oxidative stress relaxation of natural rubber vulcanized with Di-tertiary-butyl peroxide. Rubber Chem Technol 29(3):1043–1046

    Article  Google Scholar 

  5. Paniker NV, Srivastava SK, Beutler E (1970) Glutathione metabolism of the red cells, effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress. Biochim Biophys Acta 215(3):456–460

    Article  CAS  PubMed  Google Scholar 

  6. Commoner B, Townsend J, Pake GE (1954) Free radicals in biological materials. Nature 174(4432):689–691

    Article  CAS  PubMed  Google Scholar 

  7. Sies H (1985) Oxidative stress. Academic Press, London

    Google Scholar 

  8. Sies H, Cadenas E (1985) Oxidative stress – damage to intact-cells and organs. Philos Trans R Soc Lond B Biol Sci 311(1152):617–631

    Article  CAS  PubMed  Google Scholar 

  9. Commoner B, Heise JJ, Lippincott BB, Norberg RE, Passonneau JV, Townsend J (1957) Biological activity of free radicals. Science 126(3263):57–63

    Article  CAS  PubMed  Google Scholar 

  10. Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229(1):189–197

    CAS  PubMed  Google Scholar 

  11. Mccord JM, Fridovic I (1968) Reduction of cytochrome C by milk xanthine oxidase. J Biol Chem 243(21):5753

    CAS  PubMed  Google Scholar 

  12. Horecker BL (1955) Tpnh cytochrome-C reductase (Liver) Methods in Enzymology, vol 2. Academic Press, New York, pp 704–706

    Google Scholar 

  13. Horecker BL (1950) Triphosphopyridine nucleotide-cytochrome-C reductase in liver. J Biol Chem 183(2):593–605

    CAS  Google Scholar 

  14. Klingenberg M (1958) Pigments of rat liver microsomes. Arch Biochem Biophys 75(2):376–386

    Article  CAS  PubMed  Google Scholar 

  15. Garfinkel D (1958) Studies on pig liver microsomes.1. Enzymic and pigment composition of different microsomal fractions. Arch Biochem Biophys 77(2):493–509

    Article  CAS  PubMed  Google Scholar 

  16. Lieber CS, Decarli LM (1968) Ethanol oxidation by hepatic microsomes – adaptive increase after ethanol feeding. Science 162(3856):917

    Article  CAS  PubMed  Google Scholar 

  17. Lieber CS, Decarli LM (1968) Hepatic microsomes – a new site for ethanol oxidation. J Clin Invest 47(6):A62

    Google Scholar 

  18. Porter TD (2004) Jud Coon: 35 years of P450 research, a synopsis of P450 history. Drug Metab Dispos 32(1):1–6

    Article  CAS  PubMed  Google Scholar 

  19. Rossi F, Zatti M (1964) Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. Nadh + nadph oxidation by granules of resting + phagocytizing cells. Experientia 20(1):21

    Google Scholar 

  20. Klebanoff SJ (1970) Myeloperoxidase – contribution to microbicidal activity of intact leukocytes. Science 169(3950):1095–1097

    Article  CAS  PubMed  Google Scholar 

  21. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM (2013) Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukocyte Biol 93(2):185–198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Veskoukis AS, Tsatsakis AM, Kouretas D (2012) Dietary oxidative stress and antioxidant defense with an emphasis on plant extract administration. Cell Stress Chaperones 17(1):11–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cavallito CJ, Bailey JH (1944) Preliminary note on the inactivation of antibiotics. Science 100(2600):390

    Article  CAS  PubMed  Google Scholar 

  24. Babior BM, Kipnes RS, Curnutte JT (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 52(3):741–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Furchgott RF (1999) Endothelium-derived relaxing factor: discovery, early studies, and identification as nitric oxide (Nobel lecture). Biosci Rep 38(13–14):1870–1880

    Google Scholar 

  26. Furchgott RF, Zawadski J (1980) The obligatory role of the endothelium in the relaxation of arterial smooth-muscle by acetylcholine. Blood Vessels 17(3):151–151

    Google Scholar 

  27. Stamler JS, Vaughan DE, Loscalzo J (1989) Synergistic disaggregation of platelets by tissue-type plasminogen activator, prostaglandin E1, and nitroglycerin. Circ Res 65(3):796–804

    Article  CAS  PubMed  Google Scholar 

  28. Leopold JA, Loscalzo J (2005) Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol 25(7):1332–1340

    Article  CAS  PubMed  Google Scholar 

  29. Leopold JA (2010) Redox pioneer: Professor Joseph Loscalzo. Antioxid Redox Signal 13(7):1125–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Romanowski A, Murray JR, Huston MJ (1960) Effects of hydrogen peroxide on normal and hypertensive rats. Pharm Acta Helv 35:354–357

    CAS  PubMed  Google Scholar 

  31. Herman AG, Moncada S (2005) Therapeutic potential of nitric oxide donors in the prevention and treatment of atherosclerosis. Eur Heart J 26(19):1945–1955

    Article  CAS  PubMed  Google Scholar 

  32. Marsh N, Marsh A (2000) A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 27(4):313–319

    Article  CAS  PubMed  Google Scholar 

  33. Abbas K, Breton J, Drapier JC (2008) The interplay between nitric oxide and peroxiredoxins. Immunobiology 213(9–10):815–822

    Article  CAS  PubMed  Google Scholar 

  34. Omer N, Rohilla A, Rohilla S, Kushnoor A (2012) Nitric oxide: role in human biology. Int J Pharm Sci Drug Res 4(2):105–109

    CAS  Google Scholar 

  35. Dillard CJ, Litov RE, Savin WM, Dumelin EE, Tappel AL (1978) Effects of exercise, vitamin-E, and ozone on pulmonary-function and lipid peroxidation. J Appl Physiol 45(6):927–932

    CAS  PubMed  Google Scholar 

  36. Cadenas E, Muller A, Brigelius R, Esterbauer H, Sies H (1983) Effects of 4-hydroxynonenal on isolated hepatocytes – studies on chemi-luminescence response, alkane production and glutathione status. Biochem J 214(2):479–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Halliwell B (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Exp Pathol 70(6):737–757

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Schuckelt R, Brigelius Flohé R, Maiorino M, Roveri A, Reumkens J, Strassburger W, Ursini F, Wolf B, Flohé L (1991) Phospholipid hydroperoxide glutathione-peroxidase is a seleno-enzyme distinct from the classical glutathione-peroxidase as evident from cdna and amino-acid sequencing. Free Radic Res Commun 14(5–6):343–361

    Article  CAS  PubMed  Google Scholar 

  39. Sies H (1986) Biochemistry of oxidative stress. Angew Chem Int Edit 25(12):1058–1071

    Article  Google Scholar 

  40. Ingold KU, Nonhebel DC, Walton JC (1985) Conformational-analysis of the 2,2-dimethylbutyl radical by electron-paramagnetic-res spectroscopy. J Phys Chem 89(21):4424–4426

    Article  CAS  Google Scholar 

  41. Cao G, Cutler RG (1993) High concentrations of antioxidants may not improve defense against oxidative stress. Arch Grontol Geriatr 17(3):189–201

    Article  CAS  Google Scholar 

  42. Ziegler-Heitbrock HW, Sternsdorf T, Liese J, Belohradsky B, Weber C, Wedel A, Schreck R, Bauerle P, Strobel M (1993) Pyrrolidine dithiocarbamate inhibits NF-kappa B mobilization and TNF production in human monocytes. J Immunol 151(12):6986–6993

    CAS  PubMed  Google Scholar 

  43. Ziegler-Heitbrock HW, Wedel A, Schraut W, Strobel M, Wendelgass P, Sternsdorf T, Bauerle PA, Haas JG, Riethmuller G (1994) Tolerance to lipopolysaccharide involves mobilization of nuclear factor kappa B with predominance of p50 homodimers. J Biol Chem 269(25):17001–17004

    CAS  PubMed  Google Scholar 

  44. Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12(5):2005–2015

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270(5234):296–299

    Article  CAS  PubMed  Google Scholar 

  46. Lee L, Irani K, Finkel T (1998) Bcl-2 regulates nonapoptotic signal transduction: inhibition of c-Jun N-terminal kinase (JNK) activation by IL-1 beta and hydrogen peroxide. Mol Genet Metab 64(1):19–24

    Article  CAS  PubMed  Google Scholar 

  47. Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, Yu ZX, Ferrans VJ, Howard BH, Finkel T (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274(12):7936–7940

    Article  CAS  PubMed  Google Scholar 

  48. Wu Y, Kwon KS, Rhee SG (1998) Probing cellular protein targets of H2O2 with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. FEBS Lett 440(1–2):111–115

    Article  CAS  PubMed  Google Scholar 

  49. Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372

    Article  CAS  PubMed  Google Scholar 

  50. Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER (1988) The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 263(10):4704–4711

    CAS  PubMed  Google Scholar 

  51. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425(6961):980–984

    Article  CAS  PubMed  Google Scholar 

  52. Iyanagi T, Xia CW, Kim JJP (2012) NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 528(1):72–89

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Findlay VJ, Tapiero H, Townsend DM (2005) Sulfiredoxin: a potential therapeutic agent? Biomed Pharmacother 59(7):374–379

    Article  CAS  PubMed  Google Scholar 

  54. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17(2):183–189

    Article  CAS  PubMed  Google Scholar 

  55. Bowry VW, Ingold KU, Stocker R (1992) Vitamin-E in human low-density-lipoprotein – when and how this antioxidant becomes a prooxidant. Biochem J 288:341–344

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Levander OA, Fontela R, Morris VC, Ager AL (1995) Protection against murine cerebral malaria by dietary-induced oxidative stress. J Parasitol 81(1):99–103

    Article  CAS  PubMed  Google Scholar 

  57. Halliwell B (2013) The antioxidant paradox: less paradoxical now? Br J Clin Pharmacol 75(3):637–644

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Halliwell B (2000) The antioxidant paradox. Lancet 355(9210):1179–1180

    Article  CAS  PubMed  Google Scholar 

  59. Saeidnia S, Abdollahi M (2013) Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol 271(1):49–63

    Article  CAS  PubMed  Google Scholar 

  60. Sies H (2007) Total antioxidant capacity: appraisal of a concept. J Nutr 137(6):1493–1495

    CAS  PubMed  Google Scholar 

  61. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31(10):1279–1283

    Article  CAS  PubMed  Google Scholar 

  63. Fry FH, Holme AL, Giles NM, Giles GI, Collins C, Holt K, Pariagh S, Gelbrich T, Hursthouse MB, Gutowski NJ, Jacob C (2005) Multifunctional redox catalysts as selective enhancers of oxidative stress. Org Biomol Chem 3(14):2579–2587

    Article  CAS  PubMed  Google Scholar 

  64. Jacob C, Lancaster JR, Giles GI (2004) Reactive sulphur species in oxidative signal transduction. Biochem Soc Trans 32:1015–1017

    Article  CAS  PubMed  Google Scholar 

  65. Giles NM, Gutowski NJ, Giles GI, Jacob C (2003) Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 535(1–3):179–182

    Article  CAS  PubMed  Google Scholar 

  66. Marut W, Jamier V, Kavian N, Servettaz A, Winyard PG, Eggleton P, Anwar A, Nicco C, Jacob C, Chereau C, Weill B, Batteux F (2013) The natural organosulfur compound dipropyltetrasulfide prevents HOCl-induced systemic sclerosis in the mouse. Arthritis Res Ther 15(5):R167

    Google Scholar 

  67. Benkeblia N, Shinano T, Osaki M (2007) Metabolite profiling and assessment of metabolome compartmentation of soybean leaves using non-aqueous fractionation and GGMS analysis. Metabolomics 3(3):297–305

    Article  CAS  Google Scholar 

  68. Sovcikova A, Mikulasova M, Horakova K, Floch L (2001) Antibacterial and mutagenic activities of new isothiocyanate derivatives. Folia Microbiol 46(2):113–117

    Article  CAS  Google Scholar 

  69. Zentz F, Labia R, Sirot D, Faure O, Grillot R, Valla A (2005) Syntheses, in vitro antibacterial and antifungal activities of a series of N-alkyl, 1,4-dithiines. Farmaco 60(11–12):944–947

    Article  CAS  PubMed  Google Scholar 

  70. Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799

    Article  CAS  PubMed  Google Scholar 

  71. Roos G, Messens J (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51(2):314–326

    Article  CAS  PubMed  Google Scholar 

  72. Schroder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN (2000) Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 angstrom resolution. Structure 8(12):605, U5-U5

    Article  CAS  PubMed  Google Scholar 

  73. Poole LB, Reynolds CM, Wood ZA, Karplus PA, Ellis HR, Calzi ML (2000) AhpF and other NADH : peroxiredoxin oxidoreductases, homologues of low M-r thioredoxin reductase. Eur J Biochem 267(20):6126–6133

    Article  CAS  PubMed  Google Scholar 

  74. Vivancos AP, Castillo EA, Biteau B, Nicot C, Ayte J, Toledano MB, Hidalgo E (2005) A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway. Proc Natl Acad Sci U S A 102(25):8875–8880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Bertini R, Wang JM, Mengozzi M, Willems J, Joniau M, Vandamme J, Ghezzi P (1991) Effects of chlorpromazine on Pmn-mediated activities in vivo and in vitro. Immunology 72(1):138–143

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Fratelli M, Gagliardini V, Galli G, Gnocchi P, Ghiara P, Ghezzi P (1995) Autocrine interleukin-1-beta regulates both proliferation and apoptosis in El4-6.1 thymoma cells. Blood 85(12):3532–3537

    CAS  PubMed  Google Scholar 

  77. Thamsen M, Jakob U (2011) The redoxome proteomic analysis of cellular redox networks. Curr Opin Chem Biol 15(1):113–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Buettner GR, Wagner BA, Rodgers VGJ (2013) Quantitative redox biology: an approach to understand the role of reactive species in defining the cellular redox environment. Cell Biochem Biophys 67(2):477–483

    Article  CAS  PubMed  Google Scholar 

  79. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279(13):13044–13053

    Article  CAS  PubMed  Google Scholar 

  80. Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS, Terskikh AV, Lukyanov S (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  PubMed  Google Scholar 

  81. Jacob C (2011) Redox signalling via the cellular thiolstat. Biochem Soc Trans 39:1247–1253

    Article  CAS  PubMed  Google Scholar 

  82. Jacob C, Ba LA (2011) Open season for hunting and trapping post-translational cysteine modifications in proteins and enzymes. Chembiochem 12(6):841–844

    Article  CAS  PubMed  Google Scholar 

  83. Gruhlke MCH, Slusarenko AJ (2012) The biology of Reactive Sulfur Species (RSS). Plant Physiol Biochem 59:98–107

    Article  CAS  PubMed  Google Scholar 

  84. Doll R, Peto R (1981) The causes of cancer – quantitative estimates of avoidable risks of cancer in the united-states today. J Natl Cancer Inst 66(6):1191

    CAS  PubMed  Google Scholar 

  85. Aggarwal BB, Sundaram C, Prasad S, Kannappan R (2010) Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 80(11):1613–1631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Elliott R (2005) Mechanisms of genomic and non-genomic actions of carotenoids. Biochim Biophys Acta 1740(2):147–154

    Article  CAS  PubMed  Google Scholar 

  87. Moon YJ, Wang XD, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 20(2):187–210

    Article  CAS  PubMed  Google Scholar 

  88. Gerhauser C (2013) Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Curr Opin Clin Nutr Metab Care 16(4):405–410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Saarland State University, the Landesforschungsfoerderprogramm Saarland (T/1 – 14.2.1.1-LFFP 12/23), the Marie Curie Initial Training Network “RedCat” (215009), the Interreg IVa Programme (Corena-Network; 35GR11051) and the Deutsche Forschungsgemeinschaft (JA1741/2-1). We would like to express our gratitude to the “Academiacs International” network for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Castellucci Estevam, E., Nasim, M.J., Faulstich, L., Hakenesch, M., Burkholz, T., Jacob, C. (2015). A Historical Perspective on Oxidative Stress and Intracellular Redox Control. In: Roberts, S., Kehrer, J., Klotz, LO. (eds) Studies on Experimental Toxicology and Pharmacology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Cham. https://doi.org/10.1007/978-3-319-19096-9_1

Download citation

Publish with us

Policies and ethics