Skip to main content

Learning a Hidden Markov Model-Based Hyper-heuristic

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8994))

Included in the following conference series:

  • 1040 Accesses

Abstract

A simple model shows how a reasonable update scheme for the probability vector by which a hyper-heuristic chooses the next heuristic leads to neglecting useful mutation heuristics. Empirical evidence supports this on the MaxSat, TravelingSalesman, PermutationFlowshop and VehicleRoutingProblem problems. A new approach to hyper-heuristics is proposed that addresses this problem by modeling and learning hyper-heuristics by means of a hidden Markov Model. Experiments show that this is a feasible and promising approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See goo.gl/vVTZNE for details.

  2. 2.

    If the heuristics are applied with uniform probability, around \(5\,\%\) to \(20\,\%\) of the time, although it strongly depends on the problem. See goo.gl/vVTZNE for empirical evidence.

  3. 3.

    See the right axis for the appropriate unit.

  4. 4.

    Experiments show that such local optimum is nearly always near the global optimum, although sequences can be derived that are hard to learn.

  5. 5.

    This in contrast with the Markov assumption that states that a Markov process has no memory.

  6. 6.

    See Sect. 5.3.

  7. 7.

    The decision component will however have an impact on the generated evidence.

  8. 8.

    Since the Baum-Welch algorithm is a heuristic learning algorithm, this is not guaranteed, but we never encountered such an example.

  9. 9.

    For instance, how a hyper-heuristic can model a local search heuristic.

References

  1. Khamassi, I.: Ant-Q hyper heuristic approach applied to the cross-domain heuristic search challenge problems. In: CHeSC 2011 (2011)

    Google Scholar 

  2. McClymont, K., Keedwell, E.: A single objective variant of the online selective Markov chain Hyper-heuristic (MCHH-S). In: CHeSC 2011 (2011)

    Google Scholar 

  3. Wikipedia: Probability vector – wikipedia, the free encyclopedia (2014). Accessed 24 Sep 2014

    Google Scholar 

  4. Lipowski, A., Lipowska, D.: Roulette-wheel selection via stochastic acceptance. Phys. A Stat. Mech. Appl. 391(6), 2193–2196 (2012)

    Google Scholar 

  5. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College, Cambridge, UK, May 1989

    Google Scholar 

  7. Gaspero, L.D., Urli, T.: A reinforcement learning approach for the cross-domain heuristic search challenge. In: CHeSC 2011 (2011)

    Google Scholar 

  8. Mısır, M., De Causmaecker, P., Vanden Berghe, G., Verbeeck, K.: An adaptive hyper-heuristic for CHeSC 2011. In: CHeSC 2011 (2011)

    Google Scholar 

  9. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: An intelligent hyper-heuristic framework for CHeSC 2011. In: Hamadi, Y., Schoenauer, M. (eds.) LION 2012. LNCS, vol. 7219, pp. 461–466. Springer, Heidelberg (2012)

    Google Scholar 

  10. Glover, F., Hanafi, S.: Tabu search and finite convergence. Discrete Appl. Math. 119(1–2), 3–36 (2002)

    MATH  MathSciNet  Google Scholar 

  11. Burke, E.K., Curtois, T., Hyde, M.R., Kendall, G., Ochoa, G., Petrovic, S., Rodríguez, J.A.V., Gendreau, M.: Iterated local search vs. hyper-heuristics: towards general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  12. Bause, F.: Input-output hidden markov models for the aggregation of performance models. Sfb Teilprojekt M and Ls Informatik Iv and Modellierung Grosser and Sfb Teilprojekt M SFB559-03010, Universität Dortmund, Dortmund, July 2003

    Google Scholar 

  13. Markovitch, S., Scott, P.D.: The role of forgetting in learning. In: Laird, J.E. (ed.) ML, pp. 459–465. Morgan Kaufmann, Ann Arbor (1988)

    Google Scholar 

  14. Asta, S., Özcan, E., Parkes, A.J.: Batched mode hyper-heuristics. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 404–409. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  15. Van Onsem, W., Demoen, B., De Causmaecker, P.: HHaaHHM: hyper-heuristics as a hidden Markov model. In: Proceedings of the Cross-domain Heuristic Selection Competition 2014, April 2014

    Google Scholar 

  16. Pihera, J., Musliu, N.: ETHH - evolving tree hyper-heuristic. In: Proceedings of the Cross-domain Heuristic Selection Competition 2014, April 2014

    Google Scholar 

Download references

Acknowledgements

This research is funded by the Institute for Innovation through Science and Technology (IWT) under grant \(131'751\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Van Onsem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Van Onsem, W., Demoen, B., De Causmaecker, P. (2015). Learning a Hidden Markov Model-Based Hyper-heuristic. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19084-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19083-9

  • Online ISBN: 978-3-319-19084-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics