Skip to main content

Fitness Landscape of the Factoradic Representation on the Permutation Flowshop Scheduling Problem

  • Conference paper
  • First Online:
Learning and Intelligent Optimization (LION 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8994))

Included in the following conference series:

Abstract

Because permutation problems are particularly challenging to model and optimise, the possibility to represent solutions by means of factoradics has recently been investigated, allowing algorithms from other domains to be used. Initial results have shown that methods using factoradics can efficiently explore the search space, but also present difficulties to exploit the best areas. In the present paper, the fitness landscape of the factoradic representation and one of its simplest operator is studied on the Permutation Flowshop Scheduling Problem (PFSP). The analysis highlights the presence of many local optima and a high ruggedness, which confirms that the factoradic representations is not suited for local search. In addition, comparison with the classic permutation representation establishes that local moves on the factoradic representation are less able to lead to the global optima on the PFSP. The study ends by presenting directions for using and improving the factoradic representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking model estimation of distribution algorithm for the flowshop scheduling problem. IEEE Trans. Evol. Comput. 18(2), 286–300 (2014)

    Google Scholar 

  2. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg (2006)

    Book  Google Scholar 

  3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA J. Comput. 6(2), 154–160 (1994)

    MATH  Google Scholar 

  4. Kromer, P., Platos, J., Snasel, V.: Modeling permutations for genetic algorithms. In: International Conference of Soft Computing and Pattern Recognition, pp. 100–105. IEEE (2009)

    Google Scholar 

  5. Mehdi, M.: Parallel hybrid optimization methods for permutation based problems. Ph.D. thesis, Université des Sciences et Technologie de Lille (2011)

    Google Scholar 

  6. Regnier-Coudert, O., McCall, J.: Factoradic representation for permutation optimisation. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 332–341. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Schnier, T., Yao, X.: Using multiple representations in evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 479–486. IEEE (2000)

    Google Scholar 

  8. Ashlock, D.: Evolutionary Computation for Modeling and Optimization. Springer, New York (2006)

    MATH  Google Scholar 

  9. Regnier-Coudert, O., McCall, J.: Competing mutating agents for bayesian network structure learning. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 216–225. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Durstenfeld, R.: Algorithm 235: random permutation. Commun. ACM 7(7), 420 (1964)

    Google Scholar 

  11. Samarghandi, H., ElMekkawy, T.Y.: A meta-heuristic approach for solving the no-wait flow-shop problem. Int. J. Prod. Res. 50(24), 7313–7326 (2012)

    Google Scholar 

  12. Hosseini-Nasab, H., Emami, L.: A hybrid particle swarm optimisation for dynamic facility layout problem. Int. J. Prod. Res. 51(14), 4325–4335 (2013)

    Google Scholar 

  13. Baluja, S.: Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University (1994)

    Google Scholar 

  14. Knjazew, D., Goldberg, D.E.: Omega-ordering messy ga: solving permutation problems with the fast messy genetic algorithm and random keys. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 181–188 (2000)

    Google Scholar 

  15. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of the Sixth International Congress on Genetics, vol. 1 (1932)

    Google Scholar 

  16. Stadler, P.F.: Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)

    MATH  MathSciNet  Google Scholar 

  17. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the permutation flow-shop problem. In: Legrand, P., Corsini, M.-M., Hao, J.-K., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2013. LNCS, vol. 8752, pp. 41–52. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  18. Marmion, M.-E., Jourdan, L., Dhaenens, C.: Fitness landscape analysis and metaheuristics efficiency. J. Math. Model. Algorithms 12(1), 3–26 (2011)

    MathSciNet  Google Scholar 

  19. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the difference. Biol. Cybern. 63, 325–336 (1990)

    MATH  Google Scholar 

  20. Verel, S., Collard, P., Clergue, M.: Scuba Search : when selection meets innovation. In: Proceedings of the 2004 Congress on Evolutionary Computation, CEC 2004, pp. 924–931. IEEE Press (2004)

    Google Scholar 

  21. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: NILS: a neutrality-based iterated local search and its application to flowshop scheduling. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 191–202. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of machine scheduling problems. Ann. Discret. Math. 1, 343–362 (1977)

    MathSciNet  Google Scholar 

  23. Schiavinotto, T., Stützle, T.: A review of metrics on permutations for search landscape analysis. Comput. Oper. Res. 34, 3143–3153 (2007)

    MATH  Google Scholar 

  24. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22, 5–13 (1995)

    MATH  Google Scholar 

  25. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

    MATH  MathSciNet  Google Scholar 

  26. Taillard, E.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)

    MATH  Google Scholar 

  27. Johnson, S.M.: Generation of permutations by adjacent transposition. Math. Comput. 17(83), 282–285 (1963)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Eléonore Marmion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Marmion, ME., Regnier-Coudert, O. (2015). Fitness Landscape of the Factoradic Representation on the Permutation Flowshop Scheduling Problem. In: Dhaenens, C., Jourdan, L., Marmion, ME. (eds) Learning and Intelligent Optimization. LION 2015. Lecture Notes in Computer Science(), vol 8994. Springer, Cham. https://doi.org/10.1007/978-3-319-19084-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19084-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19083-9

  • Online ISBN: 978-3-319-19084-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics