Shape Memory Valves: Motivation, Risks, and Potentials

  • Alexander Czechowicz
  • Sven LangbeinEmail author


The motivation for the utilization of shape memory alloys as valve drives is discussed in this chapter in detail. With focus on valve applications, a comparison of usable effects to state-of-the-art systems is presented with a method for strategic decision guide. This chapter also contains new concepts for SMA-based valve drive solutions which combine aspects of product and service development. Industrial product service systems (IPS2), as for example condition monitoring or concepts for modification of an SMA valve drive conclude the chapter.


Characterization of possible SMA valve applications Potentials in valve design Thermal modification Lightweight design Technical potentials Production potentials Market and usage potentials Reliability Service value Industrial product service systems 


  1. 1.
    A. Böhm (2013), SMA in Serienanwendungen, 2nd Newsletter of SMA-Netzwerk, p. 3, 2/2011, Accessed 1 Oct 2013
  2. 2.
    M. Köpfer (2013), SMA-Akturatorik, Newsletter of Alfmeier Präzision AG, Accessed 1 Oct 2013
  3. 3.
    Datasheet of micro shape memory alloy valve, part no. 3000181, by dolomite-microfluidics Ltd., Accessed 1 Oct 2013
  4. 4.
    K. Lygin, H. Meier, A. Czechowicz, Using a R-phase SMA methodology to design an energy harvesting unit with tight temperature hysteresis, (3112). In Proceedings of SMASIS2013 Conference, 16–18.09.2013, Snowbird (Utah), USA, by ASME, 2013Google Scholar
  5. 5.
    S. Langbein, A. Czechowicz, Konstruktionspraxis Formgedächtnistechnik (Springer Vieweg Verlag, Mannheim, 2013). ISBN 3834819573Google Scholar
  6. 6.
    D. Will, N. Gebhardt, R. Nollau, D. Herschel, Hydraulik (Springer, Berlin, 2006), pp. 213–322. ISBN 10: 3540343229Google Scholar
  7. 7.
    H. Meier, A. Czechowicz, S. Langbein, Geregelte Formgedächtnis-Antriebssysteme mit Widerstandsrückkopplung. In Proceedings of Mechatronikkongress, VDI-Tagungsband, 2011, pp. 345–350, ISBN: 978-3-00-033892-2Google Scholar
  8. 8.
    A. Czechowicz, Adaptive und adaptronische Optimierungen von Formgedächtnisaktorsystemen für Anwendungen im Automobil, (Ph.D. Publication, Ruhr-University Bochum, 2012), Shaker, ISBN: 978-3-8440-1433-4Google Scholar
  9. 9.
    A. Coda et al., SmartFlex NiTi Wires for Shape Memory Actuators, Journal of Materials Engineering and Performance, 18 (2009), 691–695 (Springer Verlag, New York, NY, 2009)Google Scholar
  10. 10.
    A. Czechowicz, J. Boettcher, S. Mojrzisch, S. Langbein, High speed shape memory alloy activation, (8213). In Proceedings of SMASIS2012 Conference, 19–21.09.2012, Stone Mountain (Georgia), USA, by ASME, 2012Google Scholar
  11. 11.
    H. Meier et al., Smart Control Systems for Smart Materials, Journal of Materials Engineering and Performance, 20 (2010), 559–563 (Springer Verlag, New York, NY, 2011)Google Scholar
  12. 12.
    S. Langbein, A. Czechowicz, A Multi-Purpose Method for SMA Actuator Development, (3053). In Proceedings of SMASIS2013 Conference, 16–18.09.2013, Snowbird (Utah), USA, by ASME, 2013Google Scholar
  13. 13.
    H. Meier, A. Czechowicz, S. Langbein, Service Systems for Shape Memory Technology. In ASME of SMASIS 2011, 18–21.09.2011, Scottsdale (USA), pp. 419–425, ISBN: 978-0-7918-5472Google Scholar
  14. 14.
    T. Lorenz, Maschinen- und Anlagenbau Studie: Servicegeschäftpassive Vermarktungspolitik trotz steigender Bedeutung (Research Publication of MP Marketing Partner AG, 2008)Google Scholar
  15. 15.
    S. Langbein, A. Czechowicz, Strategies for Self-Repairing Shape Memory Alloy Actuators, Journal of Materials Engineering and Performance, 20 (2001), 564–569 (Springer Verlag, New York, NY, 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Zentrum für Angewandte Formgedächtnistechnik, Forschungsgemeinschaft Werkzeuge und Werkstoffe e.V.RemscheidGermany
  2. 2.FG-INNOVATION GmbHBochumGermany

Personalised recommendations