Skip to main content

A Numerical Study of Solitary Wave Interactions with a Bottom Step

  • Chapter
  • First Online:
Continuous and Distributed Systems II

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 30))

Abstract

The numerical scheme for simulation of viscous nonlinear interactions between a solitary wave and a nonregular bottom is developed. It combines the boundary integral method for description of free-surface deformations, conformal mapping used to satisfy the nonleaking boundary condition on the bottom and the vortex method for integrating the fluid dynamic equations. A series of simulations were performed to study free-surface transformations and vortical flow patterns when propagating the solitary wave over a submerged step. Types of both the reflected and transmitted waves are shown to depend on the ratio of the incident wave amplitude to the water depth over the top step wall. The obtained critical value of this coefficient, at which the transmitted wave will be always breaking, is about 0.8 that is in congruence with the experimental data. The detailed investigation of the vortical patterns generated by a solitary wave near the step edge detected two large opposite vortices shedding in both the upstream and downstream directions. Interaction of those specifies the fluid dynamics and turbulent processes in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mei, C.C.: Scattering of solitary wave at abrupt junction. J. Waterw. Port Coast. Ocean Eng. 111(2), 319–328 (1985)

    Article  Google Scholar 

  2. Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M.: Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech. 176, 117–134 (1987)

    Article  Google Scholar 

  3. Synolakis, C.E.: The run-up of solitary waves. J. Fluid Mech. 185, 523–545 (1987)

    Article  MATH  Google Scholar 

  4. Losada, M.A., Vidal, C., Medina, R.: Experimental study of the evolution of a solitary wave at an abrupt junction. J. Geophys. Res. 94, 557–566 (1989)

    Google Scholar 

  5. Beji, S., Battjes, J.A.: Numerical simulation of nonlinear wave propagation over a bar. J. Coast. Eng. 23, 1–16 (1994)

    Article  Google Scholar 

  6. Ohyama, T., Nadaoka, K.: Transformation of non-linear wave train passing over a submerged shelf without breaking. J. Coast. Eng. 24, 1–22 (1994)

    Article  Google Scholar 

  7. Liu, P.L.-F., Cheng, Y.: A numerical study evolution of a solitary wave over a shelf. J. Phys. Fluids 13(6), 1660–1667 (2001)

    Article  Google Scholar 

  8. Pelinovsky, E., Choi, B.H., Talipova, T., Woo, S.B., Kim, D.C.: Solitary wave transformation on the underwater step: asymptotic theory and numerical experiments. J. Appl. Math. Comput. 217, 1704–1718 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tang, C.J., Chang, J.H.: Flow separation during solitary wave passing over submerged obstacle. J. Hydraul. Eng. 124, 742–749 (1998)

    Article  Google Scholar 

  10. Huang, C.-J., Dong, C.-M.: On the interaction of a solitary wave and a submerged dike. J. Coast. Eng. 43, 265–286 (2001)

    Article  Google Scholar 

  11. Hsu, T.W., Hsien, C.M., Hwang, R.R.: Using RANS to simulate generation and dissipation around impermeable submerged double breakwaters. J. Coast. Eng. 51, 557–579 (2004)

    Article  Google Scholar 

  12. Klettner, C.A., Eames, I.: Momentum and energy of a solitary wave interacting with a submerged semi-circular cylinder. J. Fluid Mech. 708, 576–595 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lin, M.Y., Huang, L.H.: Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave. J. Fluid Mech. 651, 503–518 (2010)

    Article  MATH  Google Scholar 

  14. Gorban, V., Gorban, I.: Vortical flow structure near a square prism: numerical model and algorithms of control [in Ukrainian]. J. Appl. Hydromech. 7, 8–26 (2005)

    MathSciNet  Google Scholar 

  15. Zgurovsky, M., Mel’nik, V., Kasyanov, P.: Evolution Inclusions and Variation Inequalities for Earth Data Processing. Advances in Mechanical and Mathematics. Springer, Berlin (2011)

    Google Scholar 

  16. Baker, G.R., Meiron, D.J., Orszag, S.A.: Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477–501 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  18. Lavric, V.I., Savenkov, V.N.: Handbook of conformal transformations [in Russian]. naukova dumka, Kyiv (1970)

    Google Scholar 

  19. Cottet, G.-H., Koumoutsakos, P.: Vortex Methods: Theory and Practice. Cambridge University Press, London (2000)

    Book  Google Scholar 

  20. Molyakov, N.M.: Unsteady flow around a profile under a free surface separating fluids of different densities [in Russian]. Trans. Zhoukovsky Air Force Acad. 1313, 336–347 (1985)

    Google Scholar 

  21. Lin, M.Y., Huang, L.H.: Study of water waves with submerged obstacles using a vortex method with Helmholtz decomposition. J. Numer. Methods Fluids 60, 119–148 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Clements, R.R.: An inviscid model of two-dimensional vortex shedding. J. Fluid Mech. 57, 321–336 (1973)

    Article  MATH  Google Scholar 

  23. Israeli, M., Orszag, S.A.: Approximation of radiation boundary conditions. J. Comput. Phys. 41, 115–135 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Telste, J.G.: Potential flow about two counter-rotating vortices approaching a free surface. J. Fluid Mech. 201, 259–278 (1989)

    Article  MathSciNet  Google Scholar 

  25. Clamond, D., Dutykh D.: Fast accurate computation of the fully nonlinear solitary surface gravity waves. J. Comput. Fluids. 3 (2013)

    Google Scholar 

  26. Kotelnikova, A.S., Nikishov, V.I., Srebnyuk, S.M.: Interaction of surface solitary waves with submerged obstacles. Dopovidi NAC Ukr. 7, 54–59 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gorban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorban, I.M. (2015). A Numerical Study of Solitary Wave Interactions with a Bottom Step. In: Sadovnichiy, V., Zgurovsky, M. (eds) Continuous and Distributed Systems II. Studies in Systems, Decision and Control, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-19075-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19075-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19074-7

  • Online ISBN: 978-3-319-19075-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics