Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

Abstract

This chapter studies a class of generic distributed convex optimization problems. In particular, each agent is associated with a private objective function and a private convex constraint set. Meanwhile, all the agents are subject to a pair of global inequality and equality constraints. The key feature of the problem is that all the component functions depend upon a global decision variable. The agents aim to agree upon two global quantities: (1) a global minimizer of the sum of all private objective functions, simultaneously enforcing all the given constraints; (2) the induced optimal value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Each agent i executes the update law of \(y^i(k)\) for \(k\ge 1\).

  2. 2.

    Each agent i executes the update law of \(y^i(k)\) for \(k\ge 1\).

References

  1. R.D. Nowak, Distributed EM algorithms for density estimation and clustering in sensor networks. IEEE Trans. Signal Process. 51(8), 2245–2253 (2003)

    Article  Google Scholar 

  2. S.S. Ram, A. Nedić, V.V. Veeravalli, Distributed and recursive parameter estimation in parametrized linear state-space models. IEEE Trans. Autom. Control 55(2), 488–492 (2010)

    Article  Google Scholar 

  3. M.G. Rabbat, R.D. Nowak, Decentralized source localization and tracking, in IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 921–924, May 2004

    Google Scholar 

  4. F.P. Kelly, A. Maulloo, D. Tan, Rate control in communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Article  MATH  Google Scholar 

  5. A. Oliveira, S. Soares, L. Nepomuceno, Optimal active power dispatch combining network flow and interior point approaches. IEEE Trans. Power Syst. 18(4), 1235–1240 (2003)

    Article  Google Scholar 

  6. H. Wei, H. Sasaki, J. Kubokawa, R. Yokoyama, An interior point nonlinear programming for optimal power flow problems with a novel data structure. IEEE Trans. Power Syst. 13(3), 870–877 (1998)

    Article  Google Scholar 

  7. J. Derenick, J. Spletzer, Convex optimization strategies for coordinating large-scale robot formations. IEEE Trans. Robot. 23(6), 1252–1259 (2007)

    Article  Google Scholar 

  8. K.J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Nonlinear Programming (Stanford University Press, Stanford, 1958)

    Google Scholar 

  9. A. Nedić, A. Ozdaglar, Subgradient methods for saddle-point problems. J. Optim. Theory Appl. 142(1), 205–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Nedić, A. Ozdaglar, Approximate primal solutions and rate analysis for dual subgradient methods. SIAM J. Optim. 19(4), 1757–1780 (2009)

    Article  MATH  Google Scholar 

  11. D.P. Bertsekas, Convex Optimization Theory (Athena Scientific, Belmont, 2009)

    MATH  Google Scholar 

  12. D.P. Bertsekas, A. Nedić, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Belmont, 2003)

    MATH  Google Scholar 

  13. A. Nedić, A. Ozdaglar, P.A. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    Article  Google Scholar 

  14. L.S. Lasdon, Optimization Theory for Large Systems (Macmillian, New York, 1970)

    MATH  Google Scholar 

  15. M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: a mathematical theory of network architectures. Proc. IEEE 95(1), 255–312 (2007)

    Article  Google Scholar 

  16. S.H. Low, D.E. Lapsey, Optimization flow control I: basic algorithm and convergence. IEEE/ACM Trans. Netw. 7(6), 861–874 (1999)

    Article  Google Scholar 

  17. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Athena Scientific, Belmont, 1997)

    Google Scholar 

  18. J.N. Tsitsiklis, Problems in decentralized decision making and computation. Ph.D. thesis, Massachusetts Institute of Technology. Technical Report LIDS-TH-1424. http://web.mit.edu/jnt/www/Papers/PhD-84-jnt.pdf (1984)

  19. M. Zhu, S. Martínez, On distributed convex optimization under inequality and equality constraints. IEEE Trans. Autom. Control 57(1), 151–164 (2012)

    Article  Google Scholar 

  20. M. Zhu, S. Martínez, An approximate dual subgradient algorithm for multi-agent non-convex optimization. IEEE Trans. Autom. Control 58(6), 1534–1539 (2013)

    Article  Google Scholar 

  21. B. Gharesifard, J. Cortés, Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Autom. Control 59(3), 781–786 (2014)

    Article  Google Scholar 

  22. J. Lu, C.Y. Tang, Zero-gradient-sum algorithms for distributed convex optimization: the continuous-time case. IEEE Trans. Autom. Control 57(9), 2348–2354 (2012)

    Article  MathSciNet  Google Scholar 

  23. J. Wang, N. Elia, Control approach to distributed optimization, in Allerton Conference on Communications, Control and Computing, Illinois, USA, October 2010

    Google Scholar 

  24. S.S. Kia, J. Cortés, S. Martínez, Distributed convex optimization via continuous time coordination algorithms with discrete-time communication. Automatica (2013). Submitted

    Google Scholar 

  25. I. Matei, J. Baras, Performance evaluation of the consensus-based distributed subgradient method under random communication topologies. IEEE J. Sel. Top. Signal Process. 5(4), 754–771 (2011)

    Article  Google Scholar 

  26. I. Lobel, A. Ozdaglar, D. Feijer, Distributed multi-agent optimization with state-dependent communication. Math. Program. 129(2), 255–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Wei, A. Ozdaglar, A. Jadbabaie, A distributed Newton method for network utility maximization, I: algorithm. IEEE Trans. Autom. Control 58(9), 2162–2175 (2013)

    Article  MathSciNet  Google Scholar 

  28. E. Wei, A. Ozdaglar, A. Jadbabaie, A distributed Newton method for network utility maximization, II: convergence. IEEE Trans. Autom. Control 58(9), 2176–2188 (2013)

    Article  MathSciNet  Google Scholar 

  29. J. Duchi, A. Agarwal, M. Wainwright, Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)

    Article  MathSciNet  Google Scholar 

  30. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. IEEE Trans. Autom. Control 3(1), 1–122 (2011)

    Google Scholar 

  31. E. Wei, A. Ozdaglar, On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers. Math. Program. (2013). Submitted

    Google Scholar 

  32. D. Jakovetic, J. Xavier, J. Moura, Fast distributed gradient methods. IEEE Trans. Autom. Control 59(5), 1131–1146 (2014)

    Article  MathSciNet  Google Scholar 

  33. R. Cavalcante, A. Rogers, N. Jennings, I. Yamada, Distributed asymptotic minimization of sequences of convex functions by a broadcast adaptive subgradient method. IEEE J. Sel. Top. Signal Process. 5(4), 739–753 (2011)

    Article  Google Scholar 

  34. D. Richert, J. Cortés, Integral input-to-state stable saddle-point dynamics for distributed linear programming, in IEEE International Conference on Decision and Control (Florence, Italy, 2013), pp. 7480–7485

    Google Scholar 

  35. D. Mateos-Núñez, J. Cortés, Noise-to-state stable distributed convex optimization on weight-balanced digraphs, in IEEE International Conference on Decision and Control (Florence, Italy, 2013), pp. 2781–2786

    Google Scholar 

  36. N. Li, J. Marden, Designing games for distributed optimization. IEEE J. Sel. Top. Signal Process. 7(2), 230–242 (2013)

    Article  Google Scholar 

  37. J. Chen, A. Sayed, Distributed Pareto optimization via diffusion strategies. IEEE J. Sel. Top. Signal Process. 7(2), 205–220 (2013)

    Article  Google Scholar 

  38. P. Martin, M. Egerstedt, Optimization of multi-agent motion programs with applications to robotic marionettes. Hybrid Syst. Comput. Control (2009)

    Google Scholar 

  39. A. Rantzer, Using game theory for distributed control engineering, in World Congress of the Game Theory Society (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Zhu, M., Martínez, S. (2015). Distributed Cooperative Optimization. In: Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-19072-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19072-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19071-6

  • Online ISBN: 978-3-319-19072-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics