Skip to main content

Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

In order to give a physical meaning to each region of the membrane we define the interphase as the region in a lipid membrane corresponding to the polar head groups imbibed in water with net different properties than the hydrocarbon region and the water phase. The interphase region is analyzed under the scope of thermodynamics of surface and solutions based on the definition of Defay-Prigogine of an interphase and the derivation that it has in the understanding of membrane processeses in the context of biological response. In the view of this approach, the complete monolayer is considered as the lipid layer one molecule thick plus the bidimensional solution of the polar head groups inherent to it (the interphase region). Surface water activity appears as a common factor for the interaction of several aqueous soluble and surface active proteins with lipid membranes of different composition. Protein perturbation can be measured by changes in the surface pressure of lipid monolayers at different initial water surface activities. As predicted by solution chemistry, the increase of surface pressure is independent of the particle nature that dissolves. Therefore, membranes give a similar response in terms of the determined surface states given by water activity independent of the protein or peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson AW (1967) The physical chemistry of surfaces, 2nd edn. Interscience, New York

    Google Scholar 

  • Almaleck H, Gordillo GJ, Disalvo A (2013) Water defects induced by expansion and electrical fields in DMPC and DMPE monolayers: contribution of hydration and confined water. Colloids Surf B Biointerfaces 102:871–878

    Article  CAS  PubMed  Google Scholar 

  • Bagatolli LA, Gratton E, Fidelio GD (1998) Water dynamics in glycosphingolipid aggregates studied by LAURDAN fluorescence. Biophys J 75:331–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berkowitz ML, Vácha R (2012) Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 45:74–82

    Article  CAS  PubMed  Google Scholar 

  • Bernik DL, Zubiri D, Tymczyszyn E, Disalvo EA (2001) Polarity and packing at the carbonyl region of lipid bilayers. Langmuir 17:6438–6442

    Article  CAS  Google Scholar 

  • Brockman H (1994) Dipole potentials of lipid membranes. Chem Phys Lipids 73:57

    Article  CAS  PubMed  Google Scholar 

  • Cevc G (1991) Hydration force and the interfacial structure on the polar surface. J Chem Soc Faraday Trans 87:2733–2739

    Article  CAS  Google Scholar 

  • Damodaran S (1998) Water activity at interfaces and its role in regulation of interfacial enzymes: a hypothesis. Colloids Surf B Biointerfaces 11:231–237

    Article  CAS  Google Scholar 

  • Davies JT, Rideal EK (1961) Interfacial phenomena. Academic, New York

    Google Scholar 

  • De Disalvo EA, Gier J (1983) Contribution of aqueous interphases to the permeability barrier of lipid bilayer for non-electrolytes. Chem Phys Lipids 32:39–47

    Article  CAS  Google Scholar 

  • Defay R, Prigogine I (1966) Surface tension and adsorption. Wiley, New York

    Google Scholar 

  • Diaz S, Amalfa F, Biondi de Lopez AA, Disalvo EA (1999) Effect of water polarized at the carbonyl groups of phosphatidyl- cholines on the dipole potential of lipid bilayers. Langmuir 15(15):5179–5182

    Article  CAS  Google Scholar 

  • Disalvo EA, Frias MA (2013) Water state and carbonyl distribution populations in confined regions of lipid bilayers observed by FTIR spectroscopy. Langmuir 29(23):6969–6974. dx.doi.org/10.1021/la304390r

  • Disalvo EA, Viera LI, Bakás LS, Senisterra GA (1996) Lysophospholipids as natural molecular harpoons sensoring defects at lipid membranes. J Colloid Interface Sci 178:417–425

    Article  CAS  Google Scholar 

  • Disalvo EA, Lairion F, Martini F, Tymczyszyn E, Frías M, Almaleck H, Gordillo GJ (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Hollmann A, Semorile L, Martini MF (2013a) Evaluation of the Defay-Prigogine model for the membrane interphase in relation to biological response in membrane-protein interactions. Biochim Biophys Acta 1828:1834–1839

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Bouchet AM, Frias MA (2013b) Connected and isolated CH2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. Biochim Biophys Acta 1828:1683–1689. http://dx.doi.org/10.1016/j.bbamem.2013.02.007

  • Disalvo EA, Martini MF, Bouchet AM, Hollmann A, Frías MA (2014) Structural and thermodynamic properties of water–membrane interphases: significance for peptide/membrane interactions. Adv Colloid Interface Sci 211:17–33

    Article  CAS  PubMed  Google Scholar 

  • Evans E, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton

    Google Scholar 

  • Fitter J, Lechner RE, Dencher NA (1999) Interactions of hydration water and biological membranes studied by neutron scattering. J Phys Chem B 103:8036–8050. doi:10.1021/jp9912410

    Article  CAS  Google Scholar 

  • Franklin JC, Cafiso DS (1993) Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J 65:289–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frías MA, Nicastro A, Casado N, Gennaro AM, Díaz S, Disalvo EA (2007) Arbutin blocks defects in the ripple phase of DMPC bilayers by changing carbonyl organization. Chem Phys Lipids 147:22–29

    Article  PubMed  Google Scholar 

  • Gibbs JW (1986) The collected works of J.W. Gibbs, vol I. Longmans, Green and Co, New York (1931) 219

    Google Scholar 

  • Goldsmith J, Martens CC (2009) Effect of boundary conditions on the structure and dynamics of nanoscale confined water. J Phys Chem 113:2046–2052

    Article  CAS  Google Scholar 

  • Goñi FM, Arrondo JL (1986) A study of phospholipid phosphate groups in model membranes by Fourier-transform infrared-spectroscopy. Faraday Discuss Chem Soc 81:117–126

    Article  PubMed  Google Scholar 

  • Harkins WD (1952) Physical chemistry of surface films. Reinhold, New York

    Google Scholar 

  • Heerklotz H, Epand R (2001) The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. Biophys J 80:271–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollmann A, Delfederico L, Glikmann G, De Antoni G, Semorile L, Disalvo EA (2007) Characterization of liposomes coated with S-layer proteins from Lactobacilli. Biochim Biophys Acta 1768:393–400

    Article  CAS  PubMed  Google Scholar 

  • Jendrasiak GL (1996) The hydration of phospholipids and its biological significance. J Nutr Biochem 7(11):599–609

    Article  CAS  Google Scholar 

  • Jendrasiak GL, Smith RL (2004) The effect of the choline head group on phospholipid hydration. Chem Phys Lipids 131(2):183–195

    Article  CAS  PubMed  Google Scholar 

  • Jyoti A, Prokop RM, Neumann AW (1997) Manifestation of the liquid- expanded/liquid-condensed phase transition of a dipalmitoylphosphatidylcholine monolayer at the air-water interface. Colloids Surf B Biointerfaces 8:115–124

    Article  CAS  Google Scholar 

  • Kinnunen PKJ (2000) Lipid bilayers as osmotic response elements. Cell Physiol Biochem 10:243–250

    Article  CAS  PubMed  Google Scholar 

  • Klopfer KJ, Vanderlick TK (1996) Isotherms of dipalmitoylphosphatidylcholine (DPPC) monolayers: features revealed and features obscured. J Colloid Interface Sci 182:220–229

    Article  CAS  Google Scholar 

  • Koenig BW, Strey HH, Klaus Gawrisch K (1997) Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys J 73:1954–1966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo S, Adachi H, Maeda AS (2001) Phosphatidylcholine monolayers observed with Brewster angle microscopy and P-A isotherms. Thin Solid Films 393:80–85

    Article  CAS  Google Scholar 

  • Lairion F, Disalvo EA (2007) Effect of arbutin on the dipole potential and area per lipid of ester and ether phosphatidylcholine and phosphatidylethanolamine monolayers. Biochim Biophys Acta 1768:450–456

    Article  CAS  PubMed  Google Scholar 

  • Lairion F, Disalvo A (2009) Effect of dipole potential variations on the surface charge potential of lipid membranes 1607. J Phys Chem B 113:1607–1614

    Article  CAS  PubMed  Google Scholar 

  • Lam P, Wynne KJ, Wek GE (2002) Surface-tension-confined microfluidics. Langmuir 18:948–951

    Article  CAS  Google Scholar 

  • Luzardo MC, Amalfa F, Núñez A, Díaz SB, de López AC, Disalvo EA (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 78:2452–2458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marrink SJ, Tieleman DP, van Buuren AR, Berendsen HJC (1996) Membranes and water- an interesting relationship. Faraday Discuss 103:191–201

    Article  CAS  Google Scholar 

  • Marrink SJ, de Vries AH, Tielemann DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim Biophys Acta 1788:149–168

    Article  CAS  PubMed  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223

    Article  CAS  PubMed  Google Scholar 

  • Marsh D (2009) Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. Biochim Biophys Acta Biomembr 1788(10):2114

    Article  CAS  Google Scholar 

  • Martini MF, Disalvo EA (2007) Superficially active water in lipid membranes and its influence on the interaction of an aqueous soluble protease. Biochim Biophys Acta 1768:2541–2548

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ (1996) Hydration properties of lamellar and non-lamellar phases of phosphatidylcholine and phosphatidyl ethanolamine. Chem Phys Lipids 81(2):117–131

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Simon SA, Dilger JP (1989) Location of the water-hydrocarbon interface in lipid bilayers. In: Benga G (ed) Water transport in biological membranes, vol I. CRC Press Inc, Boca Raton

    Google Scholar 

  • McLaughlin S (1989) The electrostatic properties of membranes. Ann Rev Biophys Biophys Chem 18:113–136

    Article  CAS  Google Scholar 

  • Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663:19–51

    Article  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469(3):159–195

    Article  CAS  Google Scholar 

  • Pallas NR, Pethica BA (2009) Intermolecular forces in lipid monolayers. Two-dimensional virial coefficients for pentadecanoic acid from micromanometry on spread monolayers at the air/water interface. Phys Chem Chem Phys 11:5028–5034

    Article  CAS  PubMed  Google Scholar 

  • Rao CS, Damodaran S (2004) Activation of sphingomyelinase in lipid monolayer is related to interfacial water activity: evidence from two disparate systems. Colloids Surf B Biointerfaces 45:49–55

    Article  Google Scholar 

  • Ruckenstein E, Li JB (1995) A surface equation of state based on clustering of surfactant molecules of insoluble monolayers. Langmuir 11:3510–3515

    Article  CAS  Google Scholar 

  • Seelig J, Mac Donald PM, Scherer PG (1987) Phospholipid head groups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Article  CAS  PubMed  Google Scholar 

  • Sharp K, Madan B (1997) Hydrophobic effect, water structure and heat capacity changes. J Phys Chem B 101:4343–4348

    Article  CAS  Google Scholar 

  • Simon SA, McIntosh TJ (1986) Depth of water penetration into lipid bilayers. Methods Enzymol 127:511–521

    Article  CAS  PubMed  Google Scholar 

  • Smaby JM, Brockman HL (1990) Surface dipole moments of lipids at the argon–water interface. Similarities among glycerol-ester- based lipids. Biophys J 58(1):195–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sparr E, Wennerström H (2001) Responding phospholipid membranes-interplay between hydration and permeability. Biophys J 81(2):1014–1028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatulian SA (1987) Binding of alkaline-earth metal cations and some anions to phosphatidylcholine liposomes. Eur J Biochem 170:413

    Article  CAS  PubMed  Google Scholar 

  • Träuble H (1971) The movement of molecules across lipid membranes: a molecular theory. J Membr Biol 4(1):193–208

    Article  PubMed  Google Scholar 

  • Van Zoelen EJJ, Blok MC, De Gier J (1976) An improved method for the description of non-electrolyte permeation through liposomes, based on irreversible thermodynamics. Biochim Biophys Acta (BBA) Biomembr 436(2):301–306

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Anibal Disalvo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Disalvo, E.A., Hollmann, A., Martini, M.F. (2015). Hydration in Lipid Monolayers: Correlation of Water Activity and Surface Pressure. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_9

Download citation

Publish with us

Policies and ethics