Advertisement

Aquaphotomics: Near Infrared Spectroscopy and Water States in Biological Systems

  • Roumiana TsenkovaEmail author
  • Zoltan Kovacs
  • Yosuke Kubota
Part of the Subcellular Biochemistry book series (SCBI, volume 71)

Abstract

Aquaphotomics is a new discipline that provides a framework for understanding changes in water molecular system presented as a water spectral pattern, to mirror the rest of the solution and to give a holistic description related to system functionality. One of its main purposes is to identify water bands as main coordinates of future absorbance patterns to be used as a system biomarker. This chapter presents the Aquaphotomics methodology and illustrates a way to identify specific water bands using temperature change and addition of solutions of different ionic strength as perturbations. Rapid and precise measurement of low concentration solutes has been given as a strong evidence of the vast information that “the water spectral pattern as molecular mirror” approach provides. Few applications using near infrared spectroscopy and multivariate analysis as main tools of Aquaphotomics have been presented.

Keywords

Water states Near infrared spectroscopy Water structure Effect of salts 

References

  1. Abdollahi H, Tauler R (2011) Uniqueness and rotation ambiguities in Multivariate Curve Resolution methods. Chemom Intell Lab Syst 108:100–111. doi: 10.1016/j.chemolab.2011.05.009 CrossRefGoogle Scholar
  2. Afseth NK, Kohler A (2012) Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom Intell Lab Syst 117:92–99. doi: 10.1016/j.chemolab.2012.03.004 CrossRefGoogle Scholar
  3. Czarnik-Matusewicz B, Pilorz S (2006) Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis. Vib Spectrosc 40:235–245. doi: 10.1016/j.vibspec.2005.10.002 CrossRefGoogle Scholar
  4. Franks F (1973) Water: a comprehensive treatise. Plenum Press, New York, pp 276–279Google Scholar
  5. Frost VJ, Molt K (1997) Analysis of aqueous solutions by near-infrared spectrometry (NIRS) III. Binary mixtures of inorganic salts in water. J Mol Struct 410-411:573–579. doi: 10.1016/S0022-2860(96)09707-4 Google Scholar
  6. Gowen AA, Amigo JM, Tsenkova R (2013) Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal Chim Acta 759:8–20. doi: 10.1016/j.aca.2012.10.007 CrossRefPubMedGoogle Scholar
  7. Gowen AA, Marini F, Tsuchisaka Y, De Luca S, Bevilacqua M, O’Donnell C, Downey G, Tsenkova R (2015) On the feasibility of near infrared spectroscopy to detect contaminants in water using single salt solutions as model systems. Talanta 131:609–618. doi: 10.1016/j.talanta.2014.08.049 CrossRefPubMedGoogle Scholar
  8. Inoue A, Kojima K, Taniguchi Y, Suzuki K (1984) Near-infrared spectra of water and aqueous electrolyte solutions at high pressures. J Solut Chem 13:811–823CrossRefGoogle Scholar
  9. Jaumot J, Gargallo R, de Juan A, Tauler R (2005) A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemom Intell Lab Syst 76:101–110. doi: 10.1016/j.chemolab.2004.12.007 CrossRefGoogle Scholar
  10. Jinendra BM (2010) Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of soybean. Ph.D thesis, Kobe UniversityGoogle Scholar
  11. Jinendra B, Tamaki K, Kuroki S, Vassileva M, Yoshida S, Tsenkova R (2010) Near infrared spectroscopy and aquaphotomics: novel approach for rapid in vivo diagnosis of virus infected soybean. Biochem Biophys Res Commun 397:685–690. doi: 10.1016/j.bbrc.2010.06.007 CrossRefPubMedGoogle Scholar
  12. Kinoshita K, Miyazaki M, Morita H, Vassileva M, Tang C, Li D, Ishikawa O, Kusunoki H, Tsenkova R (2012) Spectral pattern of urinary water as a biomarker of estrus in the giant panda. Sci Rep 2:856. doi: 10.1038/srep00856 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Lin J, Brown CW (1993) Near-IR spectroscopic measurement of seawater salinity. Environ Sci Technol 27:1611–1615. doi: 10.1021/es00045a017 CrossRefGoogle Scholar
  14. Maeda H, Ozaki Y, Tanaka M, Hayashi N, Kojima T (1995) Near infrared spectroscopy and chemometrics studies of temperature-dependent spectral variations of water: relationship between spectral changes and hydrogen bonds. J Near Infrared Spectrosc 3:191–201. doi: 10.1255/jnirs.69 CrossRefGoogle Scholar
  15. Matija LR, Tsenkova RN, Miyazaki M, Banba K, Muncan JS (2012) Aquagrams: water spectral pattern as characterization of hydrogenated nanomaterial. FME Trans 40:51–56Google Scholar
  16. McNaught AD, Wilkinson A (1997) Terminology, compendium of chemical (the “Gold Book”), 2nd edn. Blackwell Scientific Publications, OxfordGoogle Scholar
  17. Molt K, Niemöller A, Cho YJ (1997) Analysis of aqueous solutions by near-infrared spectrometry (NIRS) II. Titrations of weak and very weak acids with strong bases. J Mol Struct 410–411:565–572. doi: 10.1016/S0022-2860(96)09706-2 Google Scholar
  18. Murayama K, Czarnik-Matusewicz B, Wu Y, Tsenkova R, Ozaki Y (2000) Comparison between conventional spectral analysis methods, chemometrics, and two-dimensional correlation spectroscopy in the analysis of near-infrared spectra of protein. Appl Spectrosc 54:978–985. doi: 10.1366/0003702001950715 CrossRefGoogle Scholar
  19. Nakakimura Y, Vassileva M, Stoyanchev T, Nakai K, Osawa R, Kawano J, Tsenkova R (2012) Extracellular metabolites play a dominant role in near-infrared spectroscopic quantification of bacteria at food-safety level concentrations. Anal Methods 4:1389. doi: 10.1039/c2ay05771a CrossRefGoogle Scholar
  20. Putra A, Santo R, Kuroki S, Tsenkova R (2010) Robust spectral model for low metal concentration measurement in aqueous solution reveals the importance of water absorbance bands. In: Proceedings of the 14th international conference on near infrared spectroscopy, Bangkok, Thailand, pp 831–835Google Scholar
  21. Raichlin Y, Katzir A (2008) Fiber-optic evanescent wave spectroscopy in the middle infrared. Appl Spectrosc 62:55A–72ACrossRefPubMedGoogle Scholar
  22. Robertson WWH, Diken EEG, Price EAE, Shin J-W, Johnson MA (2003) Spectroscopic determination of the OH- solvation shell in the OH-. (H2O)n clusters. Science 299:1367–1372. doi: 10.1126/science.1080695 CrossRefPubMedGoogle Scholar
  23. Seasholtz M, Kowalski B (1990) Qualitative information from multivariate calibration models. Appl Spectrosc 44:1337–1348CrossRefGoogle Scholar
  24. Segelstein D (1981) The complex refractive index of water. M.S. thesis, p 167Google Scholar
  25. Segtnan VH, Šašić Š, Isaksson T, Ozaki Y (2001) Studies on the structure of water using two-dimensional near-infrared correlation spectroscopy and principal component analysis. Anal Chem 73:3153–3161. doi: 10.1021/ac010102n CrossRefPubMedGoogle Scholar
  26. Smith JD, Cappa CD, Wilson KR, Geissler PL, Cohen RC, Saykally RJ (2005) Unified description of temperature-dependent hydrogen-bond rearrangements in liquid water. Proc Natl Acad Sci 102:14171PubMedCentralCrossRefPubMedGoogle Scholar
  27. Tsenkova R (2009) Introduction aquaphotomics: dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J Near Infrared Spectrosc 17:303–314. doi: 10.1255/jnirs.869 CrossRefGoogle Scholar
  28. Tsenkova R (2010) Aquaphotomics: water in the biological and aqueous world scrutinised with invisible light. Spectrosc Eur 22:6–10Google Scholar
  29. Tsenkova R, Atanassova S, Toyoda K (2001) Near infrared spectroscopy for diagnosis: influence of mammary gland inflammation on cow’s milk composition measurement. Near Infrared Anal 2:59–66Google Scholar
  30. Tsenkova RN, Iordanova IK, Toyoda K, Brown DR (2004) Prion protein fate governed by metal binding. Biochem Biophys Res Commun 325:1005–1012. doi: 10.1016/j.bbrc.2004.10.135 CrossRefPubMedGoogle Scholar
  31. Tsenkova R, Iso E, Parker M, Fockenberg C, Okubo M (2007a) Aqua-photomics: a NIRS investigation into the perturbation of water spectrum in an aqueous suspension of mesoscopic scale polystyrene spheres. In: 13th international conference on near infrared spectroscopy. Umea-Vasa, Sweden & Finland, pp A–04: 72Google Scholar
  32. Tsenkova R, Fockenberg C, Koseva N, Sakudo A, Parker M (2007b) Aqua-photomics: water absorbance patterns in NIR range used for detection of metal ions reveal the importance of sample preparation. In: 13th international conference on near infrared spectroscopy. Umea-Vasa, Sweden & Finland, 03–02: 73Google Scholar
  33. Weber JMJ, Kelley J, Nielsen S, Ayotte P, Johnson M (2000) Isolating the spectroscopic signature of a hydration shell with the use of clusters: superoxide tetrahydrate. Science 287:2461–2463. doi: 10.1126/science.287.5462.2461 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Roumiana Tsenkova
    • 1
    Email author
  • Zoltan Kovacs
    • 1
    • 2
  • Yosuke Kubota
    • 1
  1. 1.Biomeasurement Technology LaboratoryKobe UniversityKobeJapan
  2. 2.Department of Physics and ControlCorvinus University of BudapestBudapestHungary

Personalised recommendations