Skip to main content

Long-Range Lipid-Water Interaction as Observed by ATR-FTIR Spectroscopy

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

It is commonly assumed that the structure of water at a lipid-water interface is influenced mostly in the first hydration layer. However, recent results from different experimental methods show that perturbation extends through several hydration layers. Due to its low light penetration depth, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is specifically suited to study interlamellar water structure in multibilayers. Results obtained by this technique confirm the long-range water structure disturbance. Consequently, in confined membrane environments nearly all water molecules can be perturbed. It is important to note that the behavior of confined water molecules differs significantly in samples prepared in excess water and in partially hydrated samples. We show in what manner the interlamellar water perturbation is influenced by the hydration level and how it is sequentially modified with a step-by-step dehydration of samples either by water evaporation or by osmotic pressure. Our results also indicate that besides different levels of hydration the lipid-water interaction is modulated by different lipid headgroups and different lipid phases as well. Therefore, modification of interlamellar water properties may clarify the role of water-mediated effects in biological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnold K, Pratsch L, Gawrisch K (1983) Effect of poly(ethylene glycol) on phospholipid hydration and polarity of the external phase. Biochim Biophys Acta 728:121–128

    Article  CAS  PubMed  Google Scholar 

  • Arrondo J, Goni F, Macarulla J (1984) Infrared spectroscopy of phosphatidylcholines in aqueous suspension a study of the phosphate group vibrations. Biochim Biophys Acta 794:165–168

    Article  CAS  PubMed  Google Scholar 

  • Arsov Z, Quaroni L (2007) Direct interaction between cholesterol and phosphatidylcholines in hydrated membranes revealed by ATR-FTIR spectroscopy. Chem Phys Lipids 150:35–48

    Article  CAS  PubMed  Google Scholar 

  • Arsov Z, Rappolt M, Grdadolnik J (2009) Weakened hydrogen bonds in water confined between lipid bilayers: the existence of a long-range attractive hydration force. Chemphyschem 10:1438–1441

    Article  CAS  PubMed  Google Scholar 

  • Ball P (2008a) Water as a biomolecule. Chemphyschem 9:2677–2685

    Article  CAS  PubMed  Google Scholar 

  • Ball P (2008b) Water as an active constituent in cell biology. Chem Rev 108:74–108

    Article  CAS  PubMed  Google Scholar 

  • Beranová L, Humpolíčková J, Sýkora J et al (2012) Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations. Phys Chem Chem Phys 14:14516–14522

    Article  PubMed  CAS  Google Scholar 

  • Berger C, Desbat B, Kellay H et al (2003) Water confinement effects in black soap films. Langmuir 19:1–5

    Article  CAS  Google Scholar 

  • Bergmann U, Nordlund D, Wernet P et al (2007) Isotope effects in liquid water probed by x-ray Raman spectroscopy. Phys Rev B 76:024202

    Article  CAS  Google Scholar 

  • Berkowitz ML, Vácha R (2012) Aqueous solutions at the interface with phospholipid bilayers. Acc Chem Res 45:74–82

    Article  CAS  PubMed  Google Scholar 

  • Berkowitz ML, Bostick DL, Pandit S (2006) Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem Rev 106:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Bhide SY, Berkowitz ML (2005) Structure and dynamics of water at the interface with phospholipid bilayers. J Chem Phys 123:224702

    Article  PubMed  CAS  Google Scholar 

  • Binder H (2003) The molecular architecture of lipid membranes—new insights from hydration-tuning infrared linear dichroism spectroscopy. Appl Spectrosc Rev 38:15–69

    Article  CAS  Google Scholar 

  • Binder H (2007) Water near lipid membranes as seen by infrared spectroscopy. Eur Biophys J 36:265–279

    Article  CAS  PubMed  Google Scholar 

  • Binder H, Arnold K, Ulrich AS, Zschörnig O (2001) Interaction of Zn2+ with phospholipid membranes. Biophys Chem 90:57–74

    Article  CAS  PubMed  Google Scholar 

  • Boissière C, Brubach JB, Mermet A et al (2002) Water confined in lamellar structures of AOT surfactants: an infrared investigation. J Phys Chem B 106:1032–1035

    Article  CAS  Google Scholar 

  • Bonn M, Bakker HJ, Tong Y, Backus EHG (2012) No ice-like water at aqueous biological interfaces. Biointerphases 7:20

    Article  CAS  PubMed  Google Scholar 

  • Bouchet AM, Frías MA, Lairion F et al (2009) Structural and dynamical surface properties of phosphatidylethanolamine containing membranes. Biochim Biophys Acta 1788:918–925

    Article  CAS  PubMed  Google Scholar 

  • Brubach J-B, Mermet A, Filabozzi A et al (2005) Signatures of the hydrogen bonding in the infrared bands of water. J Chem Phys 122:184509

    Article  PubMed  CAS  Google Scholar 

  • Casal H, Mantsch H (1984) Polymorphic phase behaviour of phospholipid membranes studied by infrared spectroscopy. Biochim Biophys Acta Rev Biomembr 779:381–401

    Article  CAS  Google Scholar 

  • Cavaille D, Combes D, Zwick A (1996) Effect of high hydrostatic pressure and additives on the dynamics of water: a Raman spectroscopy study. J Raman Spectrosc 27:853–857

    Article  CAS  Google Scholar 

  • Chakraborty S, Bandyopadhyay S (2008) Dynamics of water in the hydration layer of a partially unfolded structure of the protein HP-36. J Phys Chem B 112:6500–6507

    Article  CAS  PubMed  Google Scholar 

  • Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Hua W, Huang Z, Allen HC (2010) Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J Am Chem Soc 132:11336–11342

    Article  CAS  PubMed  Google Scholar 

  • Cheng J-X, Pautot S, Weitz DA, Xie XS (2003) Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. Proc Natl Acad Sci U S A 100:9826–9830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costigan SC, Booth PJ, Templer RH (2000) Estimations of lipid bilayer geometry in fluid lamellar phases. Biochim Biophys Acta 1468:41–54

    Article  CAS  PubMed  Google Scholar 

  • Cringus D, Lindner J, Milder MTW et al (2005) Femtosecond water dynamics in reverse-micellar nanodroplets. Chem Phys Lett 408:162–168

    Article  CAS  Google Scholar 

  • Damodaran K, Merz K (1993) Head group-water interactions in lipid bilayers: a comparison between DMPC-and DLPE-based lipid bilayers. Langmuir 9:1179–1183

    Article  CAS  Google Scholar 

  • Debnath A, Mukherjee B, Ayappa KG et al (2010) Entropy and dynamics of water in hydration layers of a bilayer. J Chem Phys 133:174704

    Article  PubMed  CAS  Google Scholar 

  • Disalvo EA, Frias MA (2013) Water state and carbonyl distribution populations in confined regions of lipid bilayers observed by FTIR spectroscopy. Langmuir 29:6969–6974

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Lairion F, Martini F et al (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta 1778:2655–2670

    Article  CAS  PubMed  Google Scholar 

  • Disalvo EA, Bouchet AM, Frias MA (2013) Connected and isolated CH2 populations in acyl chains and its relation to pockets of confined water in lipid membranes as observed by FTIR spectrometry. Biochim Biophys Acta 1828:1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Kim SJ, Heyden M et al (2007) An extended dynamical hydration shell around proteins. Proc Natl Acad Sci U S A 104:20749–20752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Faure C, Bonakdar L, Dufourc EJ (1997) Determination of DMPC hydration in the Lα and Lβ′ phases by 2H solid state NMR of D2O. FEBS Lett 405:263–266

    Article  CAS  PubMed  Google Scholar 

  • Finer E, Darke A (1974) Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem Phys Lipids 12:1–16

    Article  CAS  PubMed  Google Scholar 

  • Fitter J, Lechner RE, Dencher NA (1999) Interactions of hydration water and biological membranes studied by neutron scattering. J Phys Chem B 103:8036–8050

    Article  CAS  Google Scholar 

  • Fringeli UP, Günthard HH (1981) Infrared membrane spectroscopy. In: Grell E (ed) Membrane spectroscopy. Springer, Berlin, pp 270–332

    Chapter  Google Scholar 

  • Fukuma T, Higgins MJ, Jarvis SP (2007) Direct imaging of individual intrinsic hydration layers on lipid bilayers at Angstrom resolution. Biophys J 92:3603–3609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gallová J, Uhríková D, Kučerka N et al (2011) The effects of cholesterol and β-sitosterol on the structure of saturated diacylphosphatidylcholine bilayers. Eur Biophys J 40:153–163

    Article  PubMed  CAS  Google Scholar 

  • Gauger DR, Andrushchenko VV, Bour P, Pohle W (2010) A spectroscopic method to estimate the binding potency of amphiphile assemblies. Anal Bioanal Chem 398:1109–1123

    Article  CAS  PubMed  Google Scholar 

  • Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta 1422:105–185

    Article  CAS  PubMed  Google Scholar 

  • Grdadolnik J, Kidrič J, Hadži D (1991) Hydration of phosphatidylcholine reverse micelles and multilayers—an infrared spectroscopic study. Chem Phys Lipids 59:57–68

    Article  CAS  Google Scholar 

  • Grdadolnik J, Kidrič J, Hadži D (1994) An FT-IR study of water hydrating dipalmitoylphosphatidylcholine multibilayers and reversed micelles. J Mol Struct 322:93–102

    Article  CAS  Google Scholar 

  • Guo Y, Yui H, Minamikawa H et al (2005) FT-IR study of the interlamellar water confined in glycolipid nanotube walls. Langmuir 21:4610–4614

    Article  CAS  PubMed  Google Scholar 

  • Hansen FY, Peters GH, Taub H, Miskowiec A (2012) Diffusion of water and selected atoms in DMPC lipid bilayer membranes. J Chem Phys 137:204910

    Article  CAS  PubMed  Google Scholar 

  • Harrick NJ (1987) Internal reflection spectroscopy, 3rd edn. Harrick Scientific Corporation, New York

    Google Scholar 

  • Higgins MJ, Polcik M, Fukuma T et al (2006) Structured water layers adjacent to biological membranes. Biophys J 91:2532–2542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hishida M, Tanaka K (2011) Long-range hydration effect of lipid membrane studied by terahertz time-domain spectroscopy. Phys Rev Lett 106:158102

    Article  CAS  PubMed  Google Scholar 

  • Hodzic A, Rappolt M, Amenitsch H et al (2008) Differential modulation of membrane structure and fluctuations by plant sterols and cholesterol. Biophys J 94:3935–3944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hübner W, Blume A (1998) Interactions at the lipid–water interface. Chem Phys Lipids 96:99–123

    Article  Google Scholar 

  • Ipsen JH, Karlström G, Mourtisen OG et al (1987) Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta Biomembr 905:162–172

    Article  CAS  Google Scholar 

  • Janiak M, Small D, Shipley G (1979) Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem 254:6068–6078

    CAS  PubMed  Google Scholar 

  • Jendrasiak G (1996) The hydration of phospholipids and its biological significance. J Nutr Biochem 7:599–609

    Article  CAS  Google Scholar 

  • Kasson PM, Lindahl E, Pande VS (2011) Water ordering at membrane interfaces controls fusion dynamics. J Am Chem Soc 133:3812–3815

    Article  CAS  PubMed  Google Scholar 

  • Katsaras J (1997) Highly aligned lipid membrane systems in the physiologically relevant “excess water” condition. Biophys J 73:2924–2929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim J, Lu W, Qiu W et al (2006) Ultrafast hydration dynamics in the lipidic cubic phase: discrete water structures in nanochannels. J Phys Chem B 110:21994–22000

    Article  CAS  PubMed  Google Scholar 

  • Kiselev M, Lesieur P, Kisselev A et al (1999) DMSO-induced dehydration of DPPC membranes studied by X-ray diffraction, small-angle neutron scattering, and calorimetry. J Alloys Compd 286:195–202

    Article  CAS  Google Scholar 

  • Kodama M, Aoki H, Takahashi H, Hatta I (1997) Interlamellar waters in dimyristoylphosphatidylethanolamine-water system as studied by calorimetry and X-ray diffraction. Biochim Biophys Acta 1329:61–73

    Article  CAS  PubMed  Google Scholar 

  • Kodama M, Kato H, Aoki H (2001) Comparison of differently bound molecules in the gel and subgel phases of a phospholipid bilayer system. J Therm Anal Calorim 64:219–230

    Article  CAS  Google Scholar 

  • Kodama M, Kawasaki Y, Aoki H, Furukawa Y (2004) Components and fractions for differently bound water molecules of dipalmitoylphosphatidylcholine-water system as studied by DSC and 2H-NMR spectroscopy. Biochim Biophys Acta 1667:56–66

    Article  CAS  PubMed  Google Scholar 

  • Kucerka N, Liu Y, Chu N et al (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:2626–2637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. Adv Protein Chem 28:239–345

    Article  CAS  PubMed  Google Scholar 

  • Lafleur M, Pigeon M, Pezolet M, Caille J-P (1989) Raman spectrum of interstitial water in biological systems. J Phys Chem 93:1522–1526

    Article  CAS  Google Scholar 

  • Lefèvre T, Toscani S, Picquart M, Dugué J (2002) Crystallization of water in multilamellar vesicles. Eur Biophys J 31:126–135

    Article  PubMed  CAS  Google Scholar 

  • Levinger N (2002) Water in confinement. Science 298:1722–1723

    Article  CAS  PubMed  Google Scholar 

  • Lewis RNAH, McElhaney RN (2007) Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes: practical considerations. Methods Mol Biol 400:207–226

    Article  CAS  PubMed  Google Scholar 

  • Libnau FO, Toft J, Christy AA, Kvalheim OM (1994) Structure of liquid water determined from infrared temperature profiling and evolutionary curve resolution. J Am Chem Soc 116:8311–8316

    Article  CAS  Google Scholar 

  • Lucent D, Vishal V, Pande VS (2007) Protein folding under confinement: a role for solvent. Proc Natl Acad Sci U S A 104:10430–10434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallikarjunaiah KJ, Leftin A, Kinnun JJ et al (2011) Solid-state 2H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J 100:98–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manciu M, Ruckenstein E (2007) On possible microscopic origins of the swelling of neutral lipid bilayers induced by simple salts. J Colloid Interface Sci 309:56–67

    Article  CAS  PubMed  Google Scholar 

  • Mantsch H (1984) Biological applications of Fourier transform infrared spectroscopy: a study of phase transitions in biomembranes. J Mol Struct 113:201–212

    Article  CAS  Google Scholar 

  • Mantsch HH, McElhaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57:213–226

    Article  CAS  PubMed  Google Scholar 

  • Maréchal Y (1991) Infrared spectra of water. I. Effect of temperature and of H/D isotopic dilution. J Chem Phys 95:5565–5573

    Article  Google Scholar 

  • Marinov R, Dufourc E (1996) Thermotropism and hydration properties of POPE and POPE-cholesterol systems as revealed by solid state 2H and 31P-NMR. Eur Biophys J 24:423–431

    Article  CAS  Google Scholar 

  • Markova N, Sparr E, Wadsö L, Wennerström H (2000) A calorimetric study of phospholipid hydration. Simultaneous monitoring of enthalpy and free energy. J Phys Chem B 104:8053–8060

    Article  CAS  Google Scholar 

  • McIntosh TJ, Simon SA (1986) Hydration force and bilayer deformation: a reevaluation. Biochemistry 25:4058–4066

    Article  CAS  PubMed  Google Scholar 

  • McIntosh T, Simon S (1994) Hydration and steric pressures between phospholipid bilayers. Annu Rev Biophys Biomol Struct 23:27–51

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TJ, Simon SA (1996) Adhesion between phosphatidylethanolamine bilayers. Langmuir 12:1622–1630

    Article  CAS  Google Scholar 

  • Mennicke U, Salditt T (2002) Preparation of solid-supported lipid bilayers by spin-coating. Langmuir 18:8172–8177

    Article  CAS  Google Scholar 

  • Milhaud J (2004) New insights into water-phospholipid model membrane interactions. Biochim Biophys Acta 1663:19–51

    Article  CAS  PubMed  Google Scholar 

  • Miller IR, Bach D (1999) Hydration of phosphatidyl serine multilayers and its modulation by conformational change induced by correlated electrostatic interaction. Bioelectrochem Bioenerg 48:361–367

    Article  CAS  PubMed  Google Scholar 

  • Mills M, Orr BG, Banaszak Holl MM, Andricioaei I (2013) Attractive hydration forces in DNA-dendrimer interactions on the nanometer scale. J Phys Chem B 117:973–981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murzyn K, Zhao W, Karttunen M et al (2006) Dynamics of water at membrane surfaces: effect of headgroup structure. Biointerphases 1:98–105

    Article  CAS  PubMed  Google Scholar 

  • Nagle J, Katsaras J (1999) Absence of a vestigial vapor pressure paradox. Phys Rev E 59:7018–7024

    Article  CAS  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469:159–195

    Article  CAS  Google Scholar 

  • Némethy G, Scheraga HA (1964) Structure of water and hydrophobic bonding in proteins. IV. The thermodynamic properties of liquid deuterium oxide. J Chem Phys 41:680–689

    Article  Google Scholar 

  • Okamura E, Umemura J, Takenaka T (1990) Orientation studies of hydrated dipalmitoylphosphatidylcholine multibilayers by polarized FTIR-ATR spectroscopy. Biochim Biophys Acta 1025:94–98

    Article  CAS  PubMed  Google Scholar 

  • Omta AW, Kropman MF, Woutersen S, Bakker HJ (2003) Influence of ions on the hydrogen-bond structure in liquid water. J Chem Phys 119:12457–12461

    Article  CAS  Google Scholar 

  • Pandit SA, Bostick D, Berkowitz ML (2003) An algorithm to describe molecular scale rugged surfaces and its application to the study of a water/lipid bilayer interface. J Chem Phys 119:2199–2205

    Article  CAS  Google Scholar 

  • Parasassi T, De Stasio G, Ravagnan G et al (1991) Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. Biophys J 60:179–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paré C, Lafleur M (1998) Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation. Biophys J 74:899–909

    Article  PubMed Central  PubMed  Google Scholar 

  • Parsegian VA, Zemb T (2011) Hydration forces: observations, explanations, expectations, questions. Curr Opin Colloid Interface Sci 16:618–624

    Article  CAS  Google Scholar 

  • Parsegian V, Rand R, Fuller N, Rau D (1986) Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol 127:400–416

    Article  CAS  PubMed  Google Scholar 

  • Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H et al (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J Phys Chem A 101:3677–3691

    Article  CAS  Google Scholar 

  • Petrache H, Gouliaev N, Tristram-Nagle S et al (1998a) Interbilayer interactions from high-resolution x-ray scattering. Phys Rev E 57:7014–7024

    Article  CAS  Google Scholar 

  • Petrache HI, Tristram-Nagle S, Nagle JF (1998b) Fluid phase structure of EPC and DMPC bilayers. Chem Phys Lipids 95:83–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeiffer H, Klose G, Heremans K (2013) Reorientation of hydration water during the thermotropic main phase transition of 1-palmitoyl-2-oleolyl-sn-glycero-3-phosphocholine (POPC) bilayers at low degrees of hydration. Chem Phys Lett 572:120–124

    Article  CAS  Google Scholar 

  • Piletic IR, Moilanen DE, Levinger NE, Fayer MD (2006) What nonlinear-IR experiments can tell you about water that the IR spectrum cannot. J Am Chem Soc 128:10366–10367

    Article  CAS  PubMed  Google Scholar 

  • Pinnick ER, Erramilli S, Wang F (2010) Computational investigation of lipid hydration water of L α 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine at three hydration levels. Mol Phys 108:2027–2036

    Article  CAS  Google Scholar 

  • Pohle W, Selle C (1996) Fourier-transform infrared spectroscopic evidence for a novel lyotropic phase transition occurring in dioleoylphosphatidylethanolamine. Chem Phys Lipids 82:191–198

    Article  CAS  Google Scholar 

  • Pohle W, Selle C, Fritzsche H, Bohl M (1997) Comparative FTIR spectroscopic study upon the hydration of lecithins and cephalins. J Mol Struct 408–409:273–277

    Article  Google Scholar 

  • Pohle W, Selle C, Fritzsche H, Binder H (1998) Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self assemblies. I. Methodology and general phenomena. Biospectroscopy 4:267–280

    Article  CAS  PubMed  Google Scholar 

  • Pohle W, Selle C, Gauger DR, Brandenburg K (2001) Lyotropic phase transitions in phospholipids as evidenced by small-angle synchrotron X-ray scattering. J Biomol Struct Dyn 19:351–364

    Article  CAS  PubMed  Google Scholar 

  • Rand RP, Fuller NL (1994) Structural dimensions and their changes in a reentrant hexagonal-lamellar transition of phospholipids. Biophys J 66:2127–2138

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rand RP, Parsegian VA (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta Rev Biomembr 988:351–376

    Article  CAS  Google Scholar 

  • Rand RP, Fuller N, Parsegian VA, Rau DC (1988) Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction. Biochemistry 27:7711–7722

    Article  CAS  PubMed  Google Scholar 

  • Rappolt M, Hickel A, Bringezu F, Lohner K (2003) Mechanism of the lamellar/inverse hexagonal phase transition examined by high resolution x-ray diffraction. Biophys J 84:3111–3122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riemenschneider J, Holzmann J, Ludwig R (2008) Salt effects on the structure of water probed by attenuated total reflection infrared spectroscopy and molecular dynamics simulations. Chemphyschem 9:2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Róg T, Murzyn K, Milhaud J et al (2009) Water isotope effect on the phosphatidylcholine bilayer properties: a molecular dynamics simulation study. J Phys Chem B 113:2378–2387

    Article  PubMed  CAS  Google Scholar 

  • Selle C, Pohle W (1998) Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. II. Water binding versus phase transitions. Biospectroscopy 4:281–294

    Article  CAS  PubMed  Google Scholar 

  • Selle C, Pohle W, Fritzsche H (1999) FTIR spectroscopic features of lyotropically induced phase transitions in phospholipid model membranes. J Mol Struct 480–481:401–405

    Article  Google Scholar 

  • Sheikh KH, Jarvis SP (2011) Crystalline hydration structure at the membrane-fluid interface of model lipid rafts indicates a highly reactive boundary region. J Am Chem Soc 133:18296–18303

    Article  CAS  PubMed  Google Scholar 

  • Skinner JL, Auer BM, Lin YS (2009) Vibrational line shapes, spectral diffusion, and hydrogen bonding in liquid water. Adv Chem Phys 142:59–103

    CAS  Google Scholar 

  • Sokołowska A, Kęcki Z (1986) Inter- and intra-molecular coupling and Fermi resonance in the Raman spectra of liquid water. J Raman Spectrosc 17:29–33

    Article  Google Scholar 

  • Sovago M, Campen RK, Wurpel GWH et al (2008) Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys Rev Lett 100:173901

    Article  PubMed  CAS  Google Scholar 

  • Stepniewski M, Bunker A, Pasenkiewicz-Gierula M et al (2010) Effects of the lipid bilayer phase state on the water membrane interface. J Phys Chem B 114:11784–11792

    Article  CAS  PubMed  Google Scholar 

  • Štrancar J, Arsov Z (2008) Application of spin-labeling EPR and ATR-FTIR spectroscopies to the study of membrane heterogeneity. In: Leitmannova Liu A (ed) Advances in planar lipid bilayers and liposomes, vol 6. Elsevier, Amsterdam, pp 16–139

    Google Scholar 

  • Tamm LK, Han X (2000) Viral fusion peptides: a tool set to disrupt and connect biological membranes. Biosci Rep 20:501–518

    Article  CAS  PubMed  Google Scholar 

  • Tamm LK, Tatulian SA (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 30:365–429

    Article  CAS  PubMed  Google Scholar 

  • Tayebi L, Ma Y, Vashaee D et al (2012) Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. Nat Mater 11:1074–1080

    CAS  PubMed  Google Scholar 

  • Ter-Minassian-Saraga L, Okamura E, Umemura J, Takenaka T (1988) Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidyl-choline multibilayers. Biochim Biophys Acta 946:417–423

    Article  CAS  PubMed  Google Scholar 

  • Tielrooij KJ, Paparo D, Piatkowski L et al (2009) Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys J 97:2484–2492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tiwari S, Ando M, Hamaguchi H (2013) Investigation of organelle-specific intracellular water structures with Raman microspectroscopy. J Raman Spectrosc 44:167–169

    Article  CAS  Google Scholar 

  • Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF (2002) Structure of gel phase DMPC determined by X-ray diffraction. Biophys J 83:3324–3335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volkov VV, Palmer DJ, Righini R (2007a) Heterogeneity of water at the phospholipid membrane interface. J Phys Chem B 111:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Volkov VV, Palmer DJ, Righini R (2007b) Distinct water species confined at the interface of a phospholipid membrane. Phys Rev Lett 99:078302

    Article  PubMed  CAS  Google Scholar 

  • Wennerström H, Sparr E (2003) Thermodynamics of membrane lipid hydration. Pure Appl Chem 75:905–912

    Article  Google Scholar 

  • Wurpel GWH, Müller M (2006) Water confined by lipid bilayers: a multiplex CARS study. Chem Phys Lett 425:336–341

    Article  CAS  Google Scholar 

  • Zhang Z, Berkowitz ML (2009) Orientational dynamics of water in phospholipid bilayers with different hydration levels. J Phys Chem B 113:7676–7680

    Article  CAS  PubMed  Google Scholar 

  • Zhong D, Pal SK, Zewail AH (2011) Biological water: a critique. Chem Phys Lett 503:1–11

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the state budget by the Slovenian Research Agency (program No. P1-0060) is acknowledged. The author appreciates collaboration or helpful discussions with Luca Quaroni, Michael Rappolt, Joze Grdadolnik, Primoz Ziherl and Rudolf Podgornik. The author also thanks Iztok Urbancic for carefully reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Arsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arsov, Z. (2015). Long-Range Lipid-Water Interaction as Observed by ATR-FTIR Spectroscopy. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_6

Download citation

Publish with us

Policies and ethics