Skip to main content

Water and Lipid Bilayers

  • Chapter
Membrane Hydration

Part of the book series: Subcellular Biochemistry ((SCBI,volume 71))

Abstract

Water is crucial to the structure and function of biological membranes. In fact, the membrane’s basic structural unit, i.e. the lipid bilayer, is self-assembled and stabilized by the so-called hydrophobic effect, whereby lipid molecules unable to hydrogen bond with water aggregate in order to prevent their hydrophobic portions from being exposed to water. However, this is just the beginning of the lipid-bilayer-water relationship. This mutual interaction defines vesicle stability in solution, controls small molecule permeation, and defines the spacing between lamella in multi-lamellar systems, to name a few examples. This chapter will describe the structural and dynamical properties central to these, and other water- lipid bilayer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman DG, Heberle FA, Feigenson GW (2013) Limited perturbation of a DPPC bilayer by fluorescent lipid probes: a molecular dynamics study. J Phys Chem B 117(17):4844–4852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Awqati Q (1999) One hundred years of membrane permeability: does Overton still rule? Nat Cell Biol 1(8):E201–E202

    Article  CAS  PubMed  Google Scholar 

  • Almeida PF, Vaz WL, Thompson T (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31(29):6739–6747

    Article  CAS  PubMed  Google Scholar 

  • Åman K, Lindahl E, Edholm O et al (2003) Structure and dynamics of interfacial water in an L α phase lipid bilayer from molecular dynamics simulations. Biophys J 84(1):102–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Armstrong BD, Han S (2009) Overhauser dynamic nuclear polarization to study local water dynamics. J Am Chem Soc 131(13):4641–4647

    Article  CAS  PubMed  Google Scholar 

  • Auer B, Kumar R, Schmidt J et al (2007) Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc Natl Acad Sci 104(36):14215–14220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Pal S, Bagchi B (2002) Hydrogen-bond dynamics near a micellar surface: origin of the universal slow relaxation at complex aqueous interfaces. Phys Rev Lett 89(11):115505

    Article  PubMed  CAS  Google Scholar 

  • Bee M (1988) Quasielastic neutron scattering: principles and applications in solid state chemistry, biology, and materials science. Adam Hilger, Bristol

    Google Scholar 

  • Bemporad D, Essex JW, Luttmann C (2004) Permeation of small molecules through a lipid bilayer: a computer simulation study. J Phys Chem B 108(15):4875–4884

    Article  CAS  Google Scholar 

  • Bernal J, Fowler R (1933) A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J Chem Phys 1(8):515–548

    Article  CAS  Google Scholar 

  • Binder H (2007) Water near lipid membranes as seen by infrared spectroscopy. Eur Biophys J 36(4–5):265–279

    Article  CAS  PubMed  Google Scholar 

  • Böckmann RA, Hac A, Heimburg T et al (2003) Effect of sodium chloride on a lipid bilayer. Biophys J 85(3):1647–1655

    Article  PubMed Central  PubMed  Google Scholar 

  • Büldt G, Gally H, Seelig A et al (1978) Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature 271(5641):182–184

    Article  PubMed  Google Scholar 

  • Cevc G (1991) Hydration force and the interfacial structure of the polar surface. J Chem Soc Faraday Trans 87(17):2733–2739

    Article  CAS  Google Scholar 

  • Chen S, Liao C, Huang H et al (2001) Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic X-ray scattering. Phys Rev Lett 86(4):740

    Article  CAS  PubMed  Google Scholar 

  • De Groot BL, Grubmüller H (2001) Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550):2353–2357

    Article  PubMed  Google Scholar 

  • Deamer DW, Bramhall J (1986) Permeability of lipid bilayers to water and ionic solutes. Chem Phys Lipids 40(2–4):167–188

    Article  CAS  PubMed  Google Scholar 

  • Debnath A, Ayappa KG, Maiti PK (2013) Simulation of influence of bilayer melting on dynamics and thermodynamics of interfacial water. Phys Rev Lett 110(1):018303

    Article  PubMed  CAS  Google Scholar 

  • Debye P, Hückel E (1923) De la theorie des electrolytes. I. abaissement du point de congelation et phenomenes associes. Phys Z 24(9):185–206

    CAS  Google Scholar 

  • Devaux P, Mcconnell H (1972) Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J Am Chem Soc 94(13):4475–4481

    Article  CAS  PubMed  Google Scholar 

  • Disalvo E, Lairion F, Martini F et al (2008) Structural and functional properties of hydration and confined water in membrane interfaces. Biochim Biophys Acta Biomembr 1778(12):2655–2670

    Article  CAS  Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77

    Article  CAS  PubMed  Google Scholar 

  • Fecko CJ, Eaves JD, Loparo JJ et al (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301(5640):1698–1702

    Article  CAS  PubMed  Google Scholar 

  • Fenimore PW, Frauenfelder H, Mcmahon BH et al (2002) Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci 99(25):16047–16051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Filippov A, Orädd G, Lindblom G (2003) Influence of cholesterol and water content on phospholipid lateral diffusion in bilayers. Langmuir 19(16):6397–6400

    Article  CAS  Google Scholar 

  • Finer EG, Darke A (1974) Phospholipid hydration studied by deuteron magnetic resonance spectroscopy. Chem Phys Lipids 12(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A (1976) Water and nonelectrolyte permeability of lipid bilayer membranes. J Gen Physiol 68(2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A (1987) Water movement through lipid bilayers, pores, and plasma membranes: theory and reality. Wiley, New York

    Google Scholar 

  • Fitter J, Lechner RE, Dencher NA (1999) Interactions of hydration water and biological membranes studied by neutron scattering. J Phys Chem B 103(38):8036–8050

    Article  CAS  Google Scholar 

  • Frank HS, Wen W-Y (1957) Ion-solvent interaction. Structural aspects of ion-solvent interaction in aqueous solutions: a suggested picture of water structure. Discuss Faraday Soc 24(0):133–140

    Article  Google Scholar 

  • Gaede HC, Gawrisch K (2003) Lateral diffusion rates of lipid, water, and a hydrophobic drug in a multilamellar liposome. Biophys J 85(3):1734–1740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gawrisch K, Ruston D, Zimmerberg J et al (1992) Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J 61(5):1213–1223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh A, Smits M, Bredenbeck J et al (2007) Membrane-bound water is energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. J Am Chem Soc 129(31):9608–9609

    Article  CAS  PubMed  Google Scholar 

  • Griffith OH, Dehlinger PJ, Van SP (1974) Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J Membr Biol 15(1):159–192

    Article  CAS  PubMed  Google Scholar 

  • Halle B (2004) Protein hydration dynamics in solution: a critical survey. Philos Trans R Soc Lond B Biol Sci 359(1448):1207–1224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanai T, Haydon D (1966) The permeability to water of bimolecular lipid membranes. J Theor Biol 11(3):370–382

    Article  CAS  PubMed  Google Scholar 

  • Heberle FA, Petruzielo RS, Pan J et al (2013) Bilayer thickness mismatch controls domain size in model membranes. J Am Chem Soc 135(18):6853–6859

    Article  CAS  PubMed  Google Scholar 

  • Helfrich W, Servuss R-M (1984) Undulations, steric interaction and cohesion of fluid membranes. Il Nuovo Cimento D 3(1):137–151

    Article  Google Scholar 

  • Ishai PB, Mamontov E, Nickels JD et al (2013) Influence of ions on water diffusion—a neutron scattering study. J Phys Chem B 117(25):7725–7729

    Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces: revised third edition. Academic, London

    Google Scholar 

  • Jansen M, Blume A (1995) A comparative study of diffusive and osmotic water permeation across bilayers composed of phospholipids with different head groups and fatty acyl chains. Biophys J 68(3):997–1008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  • Katsaras J (1995) Structure of the subgel (Lc′) and Gel (L. beta’.) phases of oriented dipalmitoylphosphatidylcholine multibilayers. J Phys Chem 99(12):4141–4147

    Article  CAS  Google Scholar 

  • Katsaras J (1997) Highly aligned lipid membrane systems in the physiologically relevant “excess water” condition. Biophys J 73(6):2924–2929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Katsaras J, Tristram-Nagle S, Liu Y et al (2000) Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys Rev E 61(5):5668–5677

    Article  CAS  Google Scholar 

  • Kausik R, Han S (2011) Dynamics and state of lipid bilayer-internal water unraveled with solution state 1H dynamic nuclear polarization. Phys Chem Chem Phys 13(17):7732–7746

    Article  CAS  PubMed  Google Scholar 

  • Kedem OT, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  • Kolano C, Helbing J, Kozinski M et al (2006) Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 444(7118):469–472

    Article  CAS  PubMed  Google Scholar 

  • König S, Sackmann E, Richter D et al (1994) Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium‐nuclear magnetic resonance relaxation. J Chem Phys 100:3307

    Article  Google Scholar 

  • Kornyshev A, Leikin S (1989) Fluctuation theory of hydration forces: the dramatic effects of inhomogeneous boundary conditions. Phys Rev A 40(11):6431

    Article  CAS  PubMed  Google Scholar 

  • Kučerka N, Nagle JF, Feller SE et al (2004) Models to analyze small-angle neutron scattering from unilamellar lipid vesicles. Phys Rev E 69(5):051903

    Article  CAS  Google Scholar 

  • Kučerka N, Tristram-Nagle S, Nagle J (2006) Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J Membr Biol 208(3):193–202

    Article  CAS  Google Scholar 

  • Kučerka N, Nagle JF, Sachs JN et al (2008a) Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys J 95(5):2356–2367

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kučerka N, Papp-Szabo E, Nieh M-P et al (2008b) Effect of cations on the structure of bilayers formed by lipopolysaccharides isolated from pseudomonas aeruginosa PAO1. J Phys Chem B 112(27):8057–8062

    Article  PubMed  CAS  Google Scholar 

  • Laage D, Hynes JT (2006) A molecular jump mechanism of water reorientation. Science 311(5762):832–835

    Article  CAS  PubMed  Google Scholar 

  • Laage D, Stirnemann G, Hynes JT (2009) Why water reorientation slows without iceberg formation around hydrophobic solutes. J Phys Chem B 113(8):2428–2435

    Article  CAS  PubMed  Google Scholar 

  • Leikin S, Parsegian VA, Rau DC et al (1993) Hydration forces. Annu Rev Phys Chem 44(1):369–395

    Article  CAS  PubMed  Google Scholar 

  • Lelkes P, Miller I (1980) Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J Membr Biol 52(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86(4):2156–2164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marčelja S, Radić N (1976) Repulsion of interfaces due to boundary water. Chem Phys Lett 42(1):129–130

    Article  Google Scholar 

  • Marchi M, Sterpone F, Ceccarelli M (2002) Water rotational relaxation and diffusion in hydrated lysozyme. J Am Chem Soc 124(23):6787–6791

    Article  CAS  PubMed  Google Scholar 

  • Marrink S-J, Berendsen HJ (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98(15):4155–4168

    Article  CAS  Google Scholar 

  • Marsh D (2002) Membrane water-penetration profiles from spin labels. Eur Biophys J 31(7):559–562

    Article  CAS  PubMed  Google Scholar 

  • Mathai JC, Tristram-Nagle S, Nagle JF et al (2008) Structural determinants of water permeability through the lipid membrane. J Gen Physiol 131(1):69–76

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mazur K, Heisler IA, Meech SR (2010) Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides. J Phys Chem B 114(32):10684–10691

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh TJ, Simon SA (1986) Area per molecule and distribution of water in fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25(17):4948–4952

    Article  CAS  PubMed  Google Scholar 

  • Mcintosh TJ, Simon SA (1994) Hydration and steric pressures between phospholipid bilayers. Annu Rev Biophys Biomol Struct 23(1):27–51

    Article  CAS  PubMed  Google Scholar 

  • Murata K, Mitsuoka K, Hirai T et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407(6804):599–605

    Article  CAS  PubMed  Google Scholar 

  • Murzyn K, Zhao W, Karttunen M et al (2006) Dynamics of water at membrane surfaces: effect of headgroup structure. Biointerphases 1(3):98–105

    Article  CAS  PubMed  Google Scholar 

  • Nagata Y, Mukamel S (2010) Vibrational Sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 132(18):6434–6442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta Rev Biomembr 1469(3):159–195

    Article  CAS  Google Scholar 

  • Nagle JF, Wiener MC (1988) Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta Biomembr 942(1):1–10

    Article  CAS  Google Scholar 

  • Nagle JF, Zhang R, Tristram-Nagle S et al (1996) X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J 70(3):1419–1431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagle JF, Mathai JC, Zeidel ML et al (2008) Theory of passive permeability through lipid bilayers. J Gen Physiol 131(1):77–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nickels JD, O’Neill H, Hong L, et al (2012) Dynamics of protein and its hydration water: neutron scattering studies on fully deuterated GFP. Biophys J 103(7):1566–1575.

    Google Scholar 

  • Overton E (1899) Ueber die osmotischen Eigenshaften der Zelle in ihrer Bedeutung Fur die Toxikologie und Pharmakologie. Vierteljahrsschr Naturforsch Ges Zurich 44:88–135

    Google Scholar 

  • Parsegian VA, Rand RP (1991) On molecular protrusion as the source of hydration forces. Langmuir 7(6):1299–1301

    Article  CAS  Google Scholar 

  • Pasenkiewicz-Gierula M, Takaoka Y, Miyagawa H et al (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J Phys Chem A 101(20):3677–3691

    Article  CAS  Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN et al (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70(1):339–348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perticaroli S, Comez L, Paolantoni M et al (2011) Extended frequency range depolarized light scattering study of N-acetyl-leucine-methylamide–water solutions. J Am Chem Soc 133(31):12063–12068

    Article  CAS  PubMed  Google Scholar 

  • Perticaroli S, Nakanishi M, Pashkovski E et al (2013) Dynamics of hydration water in sugars and peptides solutions. J Phys Chem B 117(25):7729–7736

    Article  CAS  PubMed  Google Scholar 

  • Petrache HI, Feller SE, Nagle JF (1997) Determination of component volumes of lipid bilayers from simulations. Biophys J 72(5):2237–2242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeiffer W, Henkel T, Sackmann E et al (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. EPL Europhys Lett 8(2):201

    Article  CAS  Google Scholar 

  • Raghunathan V, Katsaras J (1995) Structure of the Lc′ phase in a hydrated lipid multilamellar system. Phys Rev Lett 74(22):4456

    Article  CAS  PubMed  Google Scholar 

  • Rand R, Parsegian V (1989) Hydration forces between phospholipid bilayers. Biochim Biophys Acta Rev Biomembr 988(3):351–376

    Article  CAS  Google Scholar 

  • Rheinstädter MC (2012) Lipid membrane dynamics. Dynamics of soft matter. Springer, New York, USA, pp 263–286

    Google Scholar 

  • Rheinstädter MC, Ollinger C, Fragneto G et al (2004) Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett 93(10):108107

    Article  PubMed  CAS  Google Scholar 

  • Rheinstädter MC, Seydel T, Demmel F et al (2005) Molecular motions in lipid bilayers studied by the neutron backscattering technique. Phy Rev E 71(6):061908

    Article  CAS  Google Scholar 

  • Sears VF (1992) Neutron scattering lengths and cross sections. Neutron News 3(3):26–37

    Article  Google Scholar 

  • Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10(3):353–418

    Article  CAS  PubMed  Google Scholar 

  • Settles M, Doster W (1996) Anomalous diffusion of adsorbed water: a neutron scattering study of hydrated myoglobin. Faraday Discuss 103:269–279

    Article  CAS  Google Scholar 

  • Sirota EB, Smith GS, Safinya CR et al (1988) X-ray scattering studies of aligned, stacked surfactant membranes. Science 242(4884):1406–1409

    Article  CAS  PubMed  Google Scholar 

  • Subczynski WK, Wisniewska A, Yin J-J et al (1994) Hydrophobic barriers of lipid bilayer membranes formed by reduction of water penetration by alkyl chain unsaturation and cholesterol. Biochemistry 33(24):7670–7681

    Article  CAS  PubMed  Google Scholar 

  • Sui H, Han B-G, Lee JK et al (2001) Structural basis of water-specific transport through the AQP1 water channel. Nature 414(6866):872–878

    Article  CAS  PubMed  Google Scholar 

  • Swenson J, Kargl F, Berntsen P et al (2008) Solvent and lipid dynamics of hydrated lipid bilayers by incoherent quasielastic neutron scattering. J Chem Phys 129:045101

    Article  CAS  PubMed  Google Scholar 

  • Taschin A, Bartolini P, Eramo R et al (2013) Evidence of two distinct local structures of water from ambient to supercooled conditions. Nat Commun 4

    Google Scholar 

  • Tepper HL, Voth GA (2005) Protons may leak through pure lipid bilayers via a concerted mechanism. Biophys J 88(5):3095–3108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tielrooij KJ, Paparo D, Piatkowski L et al (2009) Dielectric relaxation dynamics of water in model membranes probed by terahertz spectroscopy. Biophys J 97(9):2484–2492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tielrooij K, Garcia-Araez N, Bonn M et al (2010) Cooperativity in ion hydration. Science 328(5981):1006–1009

    Article  CAS  PubMed  Google Scholar 

  • Torre R, Bartolini P, Righini R (2004) Structural relaxation in supercooled water by time-resolved spectroscopy. Nature 428(6980):296–299

    Article  CAS  PubMed  Google Scholar 

  • Träuble H (1971) The movement of molecules across lipid membranes: a molecular theory. J Membr Biol 4(1):193–208

    Article  PubMed  Google Scholar 

  • Tristram-Nagle S, Petrache HI, Nagle JF (1998) Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys J 75(2):917–925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ulrich AS, Watts A (1994) Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J 66(5):1441–1449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verwey EJW, Overbeek JTG, Van Nes K (1948) Theory of the stability of lyophobic colloids: the interaction of sol particles having an electric double layer. Elsevier, New York

    Google Scholar 

  • Victor KG, Korb J-P, Bryant RG (2013) Translational dynamics of water at the phospholipid interface. J Phys Chem B 117(41):12475–12478

    Article  CAS  PubMed  Google Scholar 

  • Volke F, Eisenblätter S, Galle J et al (1994) Dynamic properties of water at phosphatidylcholine lipid-bilayer surfaces as seen by deuterium and pulsed field gradient proton NMR. Chem Phys Lipids 70(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Volkov VV, Palmer DJ, Righini R (2007) Heterogeneity of water at the phospholipid membrane interface. J Phys Chem B 111(6):1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Wassall SR (1996) Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane. Biophys J 71(5):2724–2732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson MC, Brown FL (2010) Interpreting membrane scattering experiments at the mesoscale: the contribution of dissipation within the bilayer. Biophys J 98(6):L9–L11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood K, Plazanet M, Gabel F et al (2007) Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci 104(46):18049–18054

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodka AC, Butler PD, Porcar L et al (2012) Lipid bilayers and membrane dynamics: insight into thickness fluctuations. Phys Rev Lett 109(5):058102

    Article  PubMed  CAS  Google Scholar 

  • Xiang T-X, Anderson BD (1998) Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophys J 75(6):2658–2671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yi Z, Nagao M, Bossev DP (2009) Bending elasticity of saturated and monounsaturated phospholipid membranes studied by the neutron spin echo technique. J Phys Condens Matter 21:155104

    Article  PubMed  CAS  Google Scholar 

  • Zaccai G, Blasie J, Schoenborn B (1975) Neutron diffraction studies on the location of water in lecithin bilayer model membranes. Proc Natl Acad Sci 72(1):376–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou F, Schulten K (1995) Molecular dynamics study of a membrane-water interface. J Phys Chem 99(7):2194–2207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for the authors was received from the Department of Energy (DOE), Scientific User Facilities Division, Office of Basic Energy Sciences (BES) through Oak Ridge National Laboratory (ORNL), which is managed by UT-Battelle, LLC, for the U.S. DOE under contract no. DE-AC05-00OR2275. JDN was partially supported through EPSCoR grant no. DEFG02-08ER46528.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonathan D. Nickels or John Katsaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nickels, J.D., Katsaras, J. (2015). Water and Lipid Bilayers. In: Disalvo, E. (eds) Membrane Hydration. Subcellular Biochemistry, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-319-19060-0_3

Download citation

Publish with us

Policies and ethics