Anhydrobiosis: An Unsolved Problem with Applications in Human Welfare

  • John H. CroweEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 71)


Anhydrobiosis (Life Without Water) has been known for millennia, but the underlying mechanisms have not been understood until recent decades, and we have achieved only a partial understanding. One of the chief sites of damage from dehydration is membranes, and we and others have provided evidence that this damage may be obviated by the production of certain sugars, particularly trehalose. The sugar stabilizes membranes by preventing fusion and fluidizing the dry bilayers. The mechanism by which this is accomplished has been controversial, and I review that controversy here. In the past decade evidence is accumulating for a role of stress proteins in addition to or as a substitute for trehalose. Genomic studies on anhydrobiotes are yielding rapid progress. Also in the past decade, numerous uses for trehalose in treating human diseases have been proposed, some of which are in clinical testing. I conclude that the mechanisms underlying anhydrobiosis are more complex than we thought 20 years ago, but progress is being made towards elucidating those mechanisms.


Anhydrobiosis Trehalose Microdomains Water entrapment 


  1. Abusharkh SE, Erkut C, Oertel J, Kurzchalia TV, Fahmy K (2014) The role of phospholipid headgroup composition and trehalose in the desiccation tolerance of Caenorhabditis elegans. Langmuir 30:12897–12906CrossRefPubMedGoogle Scholar
  2. Andersen HD, Wanga C, Arleth L, Peters GH, Westh P (2011) Reconciliation of opposing views on membranesugar interactions. Proc Natl Acad Sci U S A 108:1874–1878PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arai C, Kohguchi C, Akamatsu S, Arai N, Yoshizane C, Hasegawa N, Hanaya T, Arai S, Ikeda M, Kuromoto M (2001) Trehalose suppresses lipopolysaccharide-induced osteoclastogenesis bone marrow in mice. Nutr Res 21:993–999CrossRefPubMedGoogle Scholar
  4. Auh J-H, Wolkers WF, Looper SA, Walker NJ, Crowe JH, Tablin F (2004) Calcium mobilization in freeze-dried human platelets. Cell Preserv Technol 2:180–187CrossRefGoogle Scholar
  5. Belton PS, Gil AH (1994) IR and Raman spectroscopic studies of the interaction of trehalose with hen egg lysozyme. Biopolymers 34:957–961CrossRefPubMedGoogle Scholar
  6. Bryant G, Wolfe J (1992) Interfacial forces in cryobiology and anhydrobiology. Cryo-Letters 13:23–36Google Scholar
  7. Bryant G, Koster KL, Wolfe J (2001) Membrane behaviour in seeds and other systems at low water content: the various effects of solutes. Seed Sci Res 11:17–25CrossRefGoogle Scholar
  8. Čejková J, Ardan T, Čejka Č, Luyckx J (2011) Favorable effects of trehalose on the development of UVB-mediated antioxidant/pro-oxidant imbalance in the corneal epithelium, proinflammatory cytokine and matrix metalloproteinase induction, and heat shock protein 70 expression. Graefes Arch Clin Exp Ophthalmol 249:1185–1194CrossRefPubMedGoogle Scholar
  9. Chandrasekhar I, Gaber BP (1988) Stabilization of the biomembrane by small molecules: interaction of trehalose with the phospholipid bilayer. J Biomol Struct Dyn 5:1163–1171CrossRefPubMedGoogle Scholar
  10. Cottone G, Cicotti G, Cordone L (2002) Protein-trehalose-water structures in trehalose coated carboxy-myoglobn. J Cell Phys 117:9862–9866Google Scholar
  11. Couzin J (2004) Huntington’s disease. Unorthodox clinical trials meld science and care. Science 304:816–817CrossRefPubMedGoogle Scholar
  12. Crowe JH (1971) Anhydrobiosis: an unsolved problem. Am Nat 105:563–574CrossRefGoogle Scholar
  13. Crowe JH (2008) Trehalose as a “chemical chaperone”: fact and fantasy. Adv Exp Med Biol 594:143–158CrossRefGoogle Scholar
  14. Crowe LM, Crowe JH (1991) Solution effects on the thermotropic phase transition of unilamellar liposomes. Biochim et Biophys Acta – Biomembr 1064:267–274CrossRefGoogle Scholar
  15. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 1984(223):701–703CrossRefGoogle Scholar
  16. Crowe JH, Spargo BJ, Crowe LM (1987) Preservation of dry liposomes does not require retention of residual water. Proc Natl Acad Sci U S A 84:1537–1540PubMedCentralCrossRefPubMedGoogle Scholar
  17. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599CrossRefPubMedGoogle Scholar
  18. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 6:73–103CrossRefGoogle Scholar
  19. Dupont S, Rapoport A, Gervais P, Beney L (2014) Survival kit of Saccharomyces cerevisiae for anhydrobiosis. Appl Microbiol Biotechnol 98:8821–8834CrossRefPubMedGoogle Scholar
  20. Eleutherio ECA, Araujo PS, Panek AD (1993) Role of the trehalose carrier in dehydration resistance of Saccharomyces cerevisiae. Biochim Biophys Acta 1156:263–266CrossRefPubMedGoogle Scholar
  21. Emanuele E (2014) Can trehalose prevent neurodegeneration? Insights from experimental studies. Curr Drug Targets 15:551–557CrossRefPubMedGoogle Scholar
  22. Erkut C, Penkov S, Khesbak H, Vorkel D, Verbavatz JM, Fahmy K, Kurzchalia TV (2011) Trehalose renders the dauer larva of Caenorhabditis elegans resistant to extreme desiccation. Curr Biol 21:1331–1336CrossRefPubMedGoogle Scholar
  23. Erkut C, Vasilj A, Boland S, Habermann B, Shevchenko A, Kurzchalia TV (2013) Molecular strategies of the Caenorhabditis elegans dauer larva to survive extreme desiccation. PLoS One 8:e82473PubMedCentralCrossRefPubMedGoogle Scholar
  24. Förster F, Beisser D, Grohme MA, Liang C, Mali B, Sieg AM, Engelmann JC, Shkumatov AV, Schokraie E (2012) Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations. Bioinf Biol Insights 2012:69–95Google Scholar
  25. Gadducci A, Fanucchi A, Cosio S, Genazzani AR (1997) Hormone replacement therapy and gynecological cancer. Anticancer Res 17:3793–3798PubMedGoogle Scholar
  26. Gaff DF, Oliver M (2013) The evolution of desiccation tolerance in angiosperm plants: a rare yet common phenomenon. Funct Plant Biol 40:315–328CrossRefGoogle Scholar
  27. Golovina EA, Golovin A, Hoekstra FA, Faller R (2010) Water replacement hypothesis in atomic details: effect of trehalose on the structure of single dehydrated POPC bilayers. Langmuir 26:11118–11126CrossRefPubMedGoogle Scholar
  28. Hand SC, Menze MA (2015) Molecular approaches for improving desiccation tolerance: insights from the brine shrimp Artemia franciscana. Planta (in press)Google Scholar
  29. Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 447:115–134CrossRefGoogle Scholar
  30. Hays LM, Crowe JH, Wolkers W (2001) Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. Cryobiology 42:88–102CrossRefPubMedGoogle Scholar
  31. Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755CrossRefPubMedGoogle Scholar
  32. Hincha DK, Thalhammer A (2012) LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochem Soc Trans 40:1000–1003CrossRefPubMedGoogle Scholar
  33. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438CrossRefPubMedGoogle Scholar
  34. Hovakimyan M, Ramoth T, Löbler M, Schmitz K, Witt M, Guthoff R, Stachs O (2012) Evaluation of protective effects of trehalose on desiccation of epithelial cells in three dimensional reconstructed human corneal epithelium. Curr Eye Res 37(982–989):2012Google Scholar
  35. Izawa YT, Matsuo T, Uchida T (2006) Atomic force microscopic observation of trehalose-treated and dried corneal epithelial Surface. Cell Preserv Tech 4:117–122CrossRefGoogle Scholar
  36. Keilin D (1959) The problem of anabiosis or latent life: history and current concept. Proc Roy Soc B 150:149–191CrossRefGoogle Scholar
  37. Kent B, Hunt T, Darwish TA, Hauß T, Garvey CJ, Bryant G (2014) Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective echanisms. J R Soc Interface 11:20140069PubMedCentralCrossRefPubMedGoogle Scholar
  38. Koster KL (2001) Effects of sugars on phospholipid phase transitions: relevance to dehydration tolerance. Cryobiol Cryotechnol 47:26–32Google Scholar
  39. Koster KL, Kami AE, Maddocks J, Bryant G (2003) Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behavior. Eur Biophys J 32:96–105PubMedGoogle Scholar
  40. Krügera UY, Wanga Y, Kumara S, Mandelkowa E (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 33:2291–2305CrossRefGoogle Scholar
  41. Lan D, Liu F, Zhao J, Chen Y, Wu J, Ding Z, Yue Z, Ren H, Jiang Y, Wang J (2012) Effect of trehalose on PC12 cells overexpressing wild-type or A53T mutant a-synuclein. Neurochem Res 37:2025–2032CrossRefPubMedGoogle Scholar
  42. Lee CWB, Waugh JS, Griffin RG (1986) Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions. Biochemistry 25:3737–3742CrossRefPubMedGoogle Scholar
  43. Leidy C, Gousset K, Ricker JV, Crowe JH (2004) Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochem Biophys 40:123–135CrossRefPubMedGoogle Scholar
  44. Lenné T, Garvey CJ, Koster KL, Bryant G (2009) Effects of sugars on lipid bilayers during dehydration – SAXS/WAXS measurements and quantitative model. J Phys Chem B 113:2486–2491CrossRefPubMedGoogle Scholar
  45. Leprince O, Buitink J (2010) Desiccation tolerance: from genomics to the field. Plant Sci 179:554–564CrossRefGoogle Scholar
  46. Li S, Chakraborty N, Borcara A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Natl Acad Sci U S A 109:20859–20864PubMedCentralCrossRefPubMedGoogle Scholar
  47. Lins RD, Pereira CS, Hunenberger PH (2004) Trehalose-protein interactions in aqueous solutions. Proteins 55:177–186CrossRefPubMedGoogle Scholar
  48. Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR (2005) Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis 20:74–81CrossRefPubMedGoogle Scholar
  49. Luyckx J, Baudouin C (2011) Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clin Ophthamol 5:577–581Google Scholar
  50. Luzardo MC, Amalfa F, Nuñez AM, Díaz S, Biondi AC, Disalvo EA (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 78:2452–2458PubMedCentralCrossRefPubMedGoogle Scholar
  51. Ma X, Jamil K, Macrae TH, Clegg JS, Russell JM, Villeneuve TS, Euloth M, Sun Y, Crowe JH, Tablin F, Oliver AE (2005) A small stress protein acts synergistically with trehalose to confer desiccation tolerance on mammalian cells. Cryobiology 51:15–28CrossRefPubMedGoogle Scholar
  52. Matsuo T (2004) Trehalose versus hyaluronan or cellulose in eye drops for the treatment of dry eye. Jpn J Ophthalmol 48:321–327CrossRefPubMedGoogle Scholar
  53. Mitsumasu K, Kanamori Y, Fujita M, Iwata K, Tanaka D, Kikuta S, Watanabe M, Cornette R, Okuda T, Kikawada T (2010) Enzymatic control of anhydrobiosis related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS J 277:4215–4228PubMedCentralCrossRefPubMedGoogle Scholar
  54. Moiset G, López CA, Bartelds R, Syga L, Rijpkema E, Cukkemane A, Baldus M, Poolman B, Marrink SJ (2014) Disachrides impact the lateral organization of lipid membranes. J Am Chem Soc 136:16167–16175CrossRefPubMedGoogle Scholar
  55. Nakagaki M, Nagase H, Ueda H (1992) Stabilization of the lamellar structure of phosphatidylcholine by complex-formation with trehalose. J Membr Sci 73:173–180CrossRefGoogle Scholar
  56. Ohtake S, Wang J (2011) Trehalose: current use and future applications. J Pharm Sci 100:2020–2053CrossRefPubMedGoogle Scholar
  57. Ricker JV, Tsvetkova NM, Wolkers WF, Crowe JH (2003) Trehalose maintains phase separation in an air-dried binary lipid mixture. Biophys J 84:3045–3051PubMedCentralCrossRefPubMedGoogle Scholar
  58. Rudolph BR, Chandrasekhar I, Gaber BP (1990) Molecular modeling of saccharide-lipid interactions. Chem Phys Lipids 53:243–261CrossRefGoogle Scholar
  59. Schebor C, Burin L, del Pilar Bueras M (1999) Stability to hydrolysis and browning of trehalose, sucrose and raffinose in low-moisture systems in relation to their use as protectants of dry biomaterials. Food Sci Technol 32:481–485Google Scholar
  60. Sum AK, Faller R, de Pablo JJ (2003) Molecular simulation of phospholipid bilayers and insights of the interactions with disaccharides. Biophys J 2003(85):2830–2844CrossRefGoogle Scholar
  61. Takeuchi K, Nakazawa M, Ebina Y, Sato K, Metoki T, Miyagawa Y, Ito T (2010) Inhibitory effects of trehalose on fibroblast proliferation and implications for ocular surgery. Exp Eye Res 91:567–577CrossRefPubMedGoogle Scholar
  62. Tanaka M, Machida Y, Niu S (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004(10):148–154CrossRefGoogle Scholar
  63. Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766CrossRefPubMedGoogle Scholar
  64. Terrasson E, Buitink J, Righetti K, Vu BY, Pelletier S, Zinsmeister J, Lalanne D, Leprince O (2013) An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison. Front Plant Sci 4:497PubMedCentralCrossRefPubMedGoogle Scholar
  65. Tolleter D, Hincha DK, Macherel D (2010) A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochim Biophys Acta-Biomembr 1798:1926–1933CrossRefGoogle Scholar
  66. Tolleter D, Jaquinode M, Mangavel A, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589Google Scholar
  67. Tomczak MM, Hincha DK, Estrada SD, Wolkers WF, Crowe LM, Feeney RE, Tablin F, Crowe JH (2002) A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophys J 82:874–881PubMedCentralCrossRefPubMedGoogle Scholar
  68. Torok Z, Tsvetkova NM, Gabor B, Horváth I, Nagy E, Pénzes Z, Hargitai J, Bensaude O, Csermely P, Crowe JH, Maresca B, Vígh L (2003) Heat shock protein co-inducers specifically modulate the membrane lipid phase. Proc Natl Acad Sci U S A 100:3131–3136PubMedCentralCrossRefPubMedGoogle Scholar
  69. Tsvetkova NM, Phillips BL, Crowe LM, Crowe JH (1998) Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state P-31 NMR and FTIR studies. Biophys J 75:2947–2955PubMedCentralCrossRefPubMedGoogle Scholar
  70. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812CrossRefPubMedGoogle Scholar
  71. Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321CrossRefGoogle Scholar
  72. Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Sleeping beauties: dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108CrossRefGoogle Scholar
  73. Vessey MP (1984) Exogenous hormones in the aetiology of cancer in women. J R Soc Med 77:542–549PubMedCentralPubMedGoogle Scholar
  74. Viera LI, Alonso-Romanowski S, Borovyagin V, Feliz MR, Disalvo EA (1993) Properties of gel phase lipid-trehalose bilayers upon rehydration. Biochim Biophys Acta 1145:157–167CrossRefPubMedGoogle Scholar
  75. Villarreal MA, Díaz SB, Disalvo EA, Montich GG (2004) Molecular dynamics simulation study of the interaction of trehalose with lipid membranes. Langmuir 20:7844–7851CrossRefPubMedGoogle Scholar
  76. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802PubMedGoogle Scholar
  77. Wharton DA (2014) Anhydrobiosis: the model worm as a model. Curr Biol 21:R578CrossRefGoogle Scholar
  78. Wolkers WF, Oldenhof H, Alberda M, Hoekstra FA (1998) A fourier transform infrared study of sugar glasses: application to anhydrobiotic higher plant cells. Biochim Biophys Acta 1379:83–96CrossRefPubMedGoogle Scholar
  79. Wolkers WF, Walker NJ, Tablin F, Crowe JH (2001) Human platelets loaded with trehalose survive freeze-drying. Cryobiology 42:79–87CrossRefPubMedGoogle Scholar
  80. Zhu S, Jamil K, Ma X, Crowe JH, Oliver AE (2006) Protection of CANARY cells after drying and rehydration correlates with decrease in apoptotic cell death. Cell Preserv Technol 4:67–77CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisUSA

Personalised recommendations