Skip to main content

Managing Reproducible Computational Experiments with Curated Proteins in KINARI-2

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9096))

Included in the following conference series:

Abstract

KINARI-2 is the second release of the web server KINARI-Web for rigidity and flexibility of biomolecules. Besides incorporating new web technologies and making substantially improved tools available to the user, KINARI-2 is designed to automatically ensure the reproducibility of its computational experiments. It is also designed to facilitate incorporating third-party software into computational pipelines and to simplify the process of large scale validation of its underlying model through comprehensive comparisons with other competing coarse-grained models. In this paper we describe the underlying architecture of the new system, as it pertains to experiment management and reproducibility.

This project is supported by NSF CCF-1319366, NSF UBM-1129194 and NIH/NIGMS 1R01GM109456.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  Google Scholar 

  2. Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C.: Molprobity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D-biological Crystallography 66, 12–21 (2010)

    Article  Google Scholar 

  3. Flynn, E.: Comparing and visualizing in silico protein rigidity: Methods and applications. Honors thesis, Smith College (2014)

    Google Scholar 

  4. Flynn, E., Streinu, I.: Comparing rigid domain decompositions for dilution and mutation analysis of proteins. Submitted to this Conference (2015)

    Google Scholar 

  5. Fulle, S., Gohlke, H.: Constraint counting on RNA structures: linking flexibility and function. Methods 42, 181–188 (2009)

    Article  Google Scholar 

  6. Heal, J., Jimenez-Roldan, J., Wells, S., Freedman, R., Römer, R.: Inhibition of HIV-1 protease: the rigidity perspective. Bioinformatics 28, 350–357 (2012)

    Article  Google Scholar 

  7. Klepeis, J.L., Lindorff-Larsen, K., Dror, R.O., Shaw, D.E.: Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology 19(2), 120–127 (2009)

    Article  Google Scholar 

  8. Kuhn, L.A.: First installation and user’s guide (floppy inclusion and rigid substructure topography, version 4.0) (2004), http://www.kuhnlab.bmb.msu.edu/software/proflex/index.html

  9. Kundu, S., Sorensen, D., Phillips Jr., G.N.: Automatic decomposition of proteins by a gaussian network model. Proteins: Structure, Function, and Bioinformatics 57, 725–733 (2004)

    Article  Google Scholar 

  10. Mayo, S., Dahiyat, B., Gordon, D.: Automated design of the surface positions of protein helices. Protein Science 6, 1333–1337 (1997)

    Article  Google Scholar 

  11. McDonald, I., Thornton, J.: Satisfying hydrogen bonding potential in proteins. Journal of Molecular Biology 238, 777–793 (1994)

    Article  Google Scholar 

  12. Rader, A., Anderson, G., Isin, B., Khorana, H., Bahar, I., Klein-Seetharaman, J.: Identification of core amino acids stabilizing rhodoposin. PNAS 101, 7246–7251 (2004)

    Article  Google Scholar 

  13. Rader, A.J., Hespenheide, B.M., Kuhn, L.A., Thorpe, M.F.: Protein unfolding: Rigidity lost. Proceedings of the National Academy of Sciences 99(6), 3540–3545 (2002)

    Article  Google Scholar 

  14. Rader, D.J.A., Kuhn, L., Thorpe, M.: Protein flexibility predictions using graph theory. Proteins 44, 150–165 (2001)

    Article  Google Scholar 

  15. Richardson, J., Richardson, D.: Bndlst, http://kinemage.biochem.duke.edu/software/utilities.php

  16. Wang, L., Rader, A., Liu, X., Jursa, C., Chen, S., Karimi, H., Bahar, I.: oGNM: online computation of structural dynamics using the Gaussian Network Model. Nucleic Acids Research 34, W24–W31 (2006)

    Google Scholar 

  17. Wells, S., Jimenez-Roldan, J., Römer, R.: Comparative analysis of rigidity across protein families. Physical Biology 6 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Bowers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bowers, J.C., John, R.T., Streinu, I. (2015). Managing Reproducible Computational Experiments with Curated Proteins in KINARI-2. In: Harrison, R., Li, Y., Măndoiu, I. (eds) Bioinformatics Research and Applications. ISBRA 2015. Lecture Notes in Computer Science(), vol 9096. Springer, Cham. https://doi.org/10.1007/978-3-319-19048-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19048-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19047-1

  • Online ISBN: 978-3-319-19048-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics